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Time series

 An observed dynamical system (simulated / 

experimental / field measurements ) results in 

observables varying in time  time series

 In engineering and environmental systems we 

are aware of system monitoring

 Do time series contain information about the 

underlying system dynamics  that can be useful?



Dynamical System

X1(t)

X2(t)

Xn(t)

f1(x1, x2, …, xn)

fn(x1, x2, …, xn)

f2(x1, x2, …, xn)

X1(t+dt)

X2(t+dt)

Xn(t+dt)

INPUT OUTPUT



Example (1) - Pendulum

Known Dynamical System  Time Series
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Example (1) - Pendulum

from time series to phase space

Plot for every time t  all points(θ, ω)

Phase space

From time

To Geometry



 Lorentz system (chaotic)

Example (2)
Known dynamical system  time series

Initial conditions



Example Lorentz (cont’nd)

x1(t)

x2(t)

x3(t)

Phase space



Example Lorentz (cont’d)

Phase space variation due to variation of the r parameter (2-D projections)

Point attractor Periodic orbit Chaotic (strange) 

attractor

Geometry can help detect transitions!



Utility of phase space

• It gives us an idea about all the allowed states of our 

system

• Knowing one or more variables 

we can estimate the others

• It is a geometrical object  we can use geometrical 

tools to compare different systems or states

• if an attractor exist we do not need to explore the whole 

phase space 

Phase space



Dynamical System (Practically)

X1(t)

X2(t)

Xn(t)

X1(t+dt)

X2(t+dt)

Xm(t+dt)

f?(?)

We do not know the 

laws that describe the 

system evolution

We have in general 

access only to several 

measurable quantities 

of the system 

observables

We do not know the 

number of variables 

that describe the 

system state

?



Several Practical Aspects

 The quantity we observe is a system 

variable or a function of several system’s 

variables? 

 In some cases yes, but not always.

 The various observed quantities are 

independent or interdependent? 



Inverse problem
Known time series – unknown dynamical system

Example (1)
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Water level of river Nestos (Northern Greece)

Temenos measurement Station : 01/01/1980 - 30/05/97



Questions

 Can we extract from one time series useful 

information about the simplest model system 

that can describe the real system ?

 The time series originates from a deterministic or 

stochastic system?

 The underlying system is linear or non-linear?



What can be the results of the analysis?

 Elements of system dynamics: 

characteristic times/scales of the underlying system

 System Identification, Change of State

 Prediction of future values

 System Control



What can be the results of the analysis?

 Elements of system dynamics: 

characteristic times/scales of the underlying system

 System Identification, Change of State

 Temporal correlations

 Prediction of future values

 System Control
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What you already know to do

Statistical analysis mean value, standard deviation, skewness, kyrtosis

The problem is that statistical analysis 

gives the same results for different temporal variations

Just order the data 

same statistic but..



Temporal behavior   - linear methods: 

regression analysis

Relation between successive measurements is linear

X(t+dt)=A*X(t)+B 

Or dependence on several previous measurements 

Χ(t+dt)=A1*X(t)+A2*X(t-dt)+…+AN*X(t-Ndt)+B

And for a system

Χ1(t+dt)=A11*X1(t)+A12*X2(t)+…+AN1*XΝ(t)+B1

Χ2(t+dt)=A21*X1(t)+A22*X2(t)+…+AN2*XΝ(t)+B2

……………………

ΧΝ(t+dt)=AΝ1*X1(t)+AΝ2*X2(t)+…+ANΝ*XΝ(t)+BN



Unfortunately nature

is in general more complex

and in general non-linear



 (a) convergence toward (or repellence from) given points of 

equilibrium (points Χ where f (1) (X)=0 ) depending on their state 

stable or unstable equilibrium.

 (b) oscillations that  are periodic, if the trajectories are 

characterized by d frequencies ω1, ω2, …, ωd with rational ratio 

between them, or nearly periodic when frequencies  present 

irrational ratios.

 (c) chaotic behavior κwhere the motion in the phase space is 

aperiodic , finite and is characterized by a continuous power 

spectrum and sensitive dependence on initial conditions.P(f)=Afb

Time and Geometry

in asymptotic behavior of the system in time ∞



Attractors

 attractor : Set of points in the phase to which 

tend asymptotically all trajectories in the phase 

space for a range of initial conditions

 basin of attraction of an attractor: the set of initial 

conditions whose evolution leads to the attractor.

 The asymptotic form of the trajectory in phase 

space can be an attractor.



Point attractor

Time series Phase space
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Toroidal attractor

Time series Atrractor
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Chaotic or Strange attractor
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Autocorrelation function
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LINEAR TOOLS

Power Spectrum
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Transformation from  time domain space to frequency domain

F(t) → Φ(F)



Continuous Fourier Transformation
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Discrete Fourier Transformation (DFT)
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Example 1
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Fourier Transform
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y=3*sin(2π3t)+4*sin(2π6t)+5*sin(2π16t)

Initial function:

Fourier Transform

Delta functions

time

frequency
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Utility of Fourier Transform

 Find Characteristic Frequencies i.e. times

 Extract periodic or seasonal components

 In many cases we can distinguish a near 

periodic time series from a chaotic one. 



Power spectrum and Power law behavior

 P(f)=Α*fβ

 β=1  Self Organized Criticality (Bak 1992)

 Variation of the value of the exponent β is an 

indicator of the change of the system state

 The importance of this behavior :

there is not one ore more specific frequencies 

but a continuous range with variable contribution

For several phenomena
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Power spectrum example: Lorenz system

Chaos

Non chaos

Characteristic 

frequencies

Wideband 

signal



AND NOW 

SOME APPLICATIONS



Application : rainfall

(Verrier et al 2011)



Rainfall power spectrum P(f)=A/fβ



Τemporal analysis: Hurst Exponent

If T(i), i=1,...,N, is a time series T. 

For every n, 2≤n≤N, we denote by <T>n the mean value of the first n elements of 

the time series T, i.e., 
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Hurst Exponent (cont’d)

 The function Rn generally increases as a function of n. Let us also denote 

by Sn the standard deviation of the first n elements of the time series {T(j)}, 

i.e.,
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In the case of a fractional Brownian motion in the limit of large n, 

(Rn / Sn ) (n) H 

with 0≤H≤1, the Hurst exponent.

We can plot log(Rn/Sn) vs. log(n) and, in the case of scaling, estimate the 

value of the Hurst exponent.



Significance of Hurst exponent

 For time series with consecutive values generated by

statistically independent processes with finite variances

H=0.5 (uncorrelated or white noise).

 0.5<H<1 processes where fluctuations in subsequent

values are positively correlated (persistence), e.g. large

positive values are followed by large positive values (or

large values) and vice versa.

 0<H<0.5 corresponds to processes where fluctuations in

subsequent values are negatively correlated (anti-

persistence) e.g. large positive values are followed by

large negative values (or very small values) and vice

versa.



• Analysis of rainfall radar data

• Analyse the persistent and chaotic character of rainfall over 

Rhône river valley.

Hurst exponent application

The role of the non-linear relief-rain interaction in the rainfall intensity structure. 

Molinie, G. Karakasidis, T., Triantafyllou, A. Creutin, J-D.,  Anquetin, S.,  EGU General 

Assembly 7-12 April, 2013 Vienna, 



Examine area cross sections

Vertical cross sections above Rhone river valley

Resolution of 1km x 1km



Radar Image

Resolution 1km x 1km

150 rain time series

At each vertical cut



Hurst map 

Mountains seems to block persistence and complexity



Between the mountain crests 

Hurst Exponent shows the 

lowest values in this event.

Cumulative rainfall increases  

almost above the first big 

mountain range (its natural due 

to turbulence presence)

Cross section at X=805km

The relief change has an influence 

on Hurst parameters

Hurst parameter behaviour reveal that the foothill 

presence creates a perturbation in rainfall structure; 

because of the variation of height rather than the 

height itself



Application: identify different spatial behavior:

water level of river Nestos



River water level time series at three positions

H=0.77 H=0.83 

H=0.465
The similarities were 

found to be linked to 

similarities in the 

ground characteristics 

(slopes, materials)



Application in spatiotemporal variation

Macroscopic Fluid Flow

Time-series analysis of temperature fluctuations in a
horizontal round heated jet.

Jet axis

Overflow

Thermistors

Data 
acquisition

Ta

T o
x

y
y

x

The ambient water temperature varied between 18-20oC, while the jet water 
temperature was around 60oC. A jet nozzle of 0.65cm diameter was used.



Question : 

where the jet axis is located since the boundaries are not well defined ?



Horizontal round heated jet: 

observables

Instantaneous temperature time series were recorded at
several points across a horizontal line of the jet as a
function of their distance from the center line.

The variation of the characteristic time scales obtained from
the above analysis is associated with and interpreted via
the transitions of the physical state of the flow from the
center line to the boundary of the jet.



Turbulent fluctuations: Power Spectrum

a narrow but distinct region
where we have
approximately conditions of
fully developed
homogeneous turbulence.

another region at the higher
frequencies of the
spectrum with higher slope
(close to 3). Analogous
behavior have been
observed in vertical jet flow
[Papanicolaou et al. 1987]
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 Definition

 pX(x) the probability that Χ=x, pY(y) the probability that Y=y

 pXY(x,y) the joint probability Χ=x and Υ=y 

 The AMI takes only positive values.

 We choose as time delay the time corresponding to the first local 

minimum of AMI (there correlations become small for the first time)

 AMI takes into account not only linear correlations between 

successive measurements


yx YX
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ypxp

yxp
yxpYXI
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Non linear Temporal Analysis: 

Average Mutual information (ΑΜΙ)



Application in turbulent jet

Close to the jet centerline memory is lost fast.  At locations far from the 
centerline memory is large. 

Short memory corresponds to short living flow structures - in the axis 
region we expect to have fully developed turbulence.

As we go towards the ambient fluid, larger scale flow structures dominate 
the flow. These flow structures live longer and give rise to longer 
memory effects.
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Phase space reconstruction

DΣυνθήκη m≥2D

(reconstructed 

state space)

Original 

phase space

Observed 

time series

Embedding

The invariant quantities of the two spaces must remain the same

Kugiumtzis 1999



Example of Phase space: The Lorenz System

)xσ(x
dt

dx
12

1  3121
2 xxxrx

dt

dx


321
3 bxxx

dt

dx


x1 proportional to the intensity of the convective motion, 

x2 proportional to the temperature difference between ascending and 

descending currents,

x3 proportional to distortion of vertical temperature profile from linearity. 

•σ   Prandtl number

•r normalized Rayleigh number

•b gives the size of the region approximated by the system 

For values σ=10 r=28 και b=8/3 the system becomes chaotic, i.e. a small

change in initial conditions can result in a large change in the output.



x1(t) x2(t) x3(t)

Phase space of the Lorenz system

For every time t plot all points (x1, x2, x3)



Phase Space Reconstruction (2)

 We are interested in 

metric (topological) properties such as the dimension of the attractor

 It is not necessary to reconstruct the full phase space given that in 

the majority of cases the system presents an attractor with smaller 

dimension

 The reconstructed phase space has the following properties

– Each point is mapped through the dynamics to a unique successive point

– There is a smooth and nonsingular transformation between the 

reconstructed space and the original space.

– This methodology was introduced by Packard et al (1980) and Takens

(1981)



Phase space reconstruction (1)

 If the system is deterministic it is reasonable to expect that each 

measurement depends on a given number of previous 

measurements, i.e. Xn+1=f(Xn, Xn-1, Xn-2, …,Xn-m) 

 and that for small Δt these values include information equivalent to 

that of several derivatives that could be described by the system 

evolution
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Method of Delays

 The reconstruction of the phase space is done via the construction 

of a   m-dimensional vector states Si from the time series in the 

following way:

  )1(2 ,,,,  miiiii xxxxS 

 Parameters necessary for the reconstruction

 Α) embedding dimension m (in what space I plot my points)

 Β) time delay τ (how close the timeseries points are)



Choice of time delay τ

 If τ is too small then successive time series values are unnecessarily 

strongly correlated and the chosen components do not contain 

additional information

 If τ is too large the values of the time series may become 

unnecessarily extremely 

 An empirical rule of thumb that has been established for the chooice

of τ is to choose the smallest τ value for which the components of 

the reconstructed state vector

become uncorrelated.

 Two methods are employed

 autocorrelation function

 average mutual information

  )1(2 ,,,,  miiiii xxxxx 



Choice of time delay:

Autocorrelation function (AF)

 We choose the time τ for which AF is zero for the first time.

 If AF does not fall to zero quite fast we chose as τ the time for 

which it falls to 1/e (approximately 40%) of the value for τ=0.

 Remember: AF takes into account only linear correlations 

between successive points of the time series.



65

Example of choice of τ

 Lorentz system (only one component)



Choice of embedding dimension m

Takens’ theorem sets the condition m≥2D+1 where D is the attractor 

dimension.

Other researchers set a more loose condition: m≥D

If we choose small embedding dimension m the attractor will be 

“squeezed” and will present self crossing, thus not being equivalent to 

the original attractor.

If the embedding dimension is larger than what is necessary the 

corresponding calculations will be unnecessarily more complex and 

time consuming.



Method of False Nearest Neighbors

The principle of the method (Abarbanel 1993)

Two points Si , Sj in the reconstructed phase space with embeding

dimension m are located at a distance R. How this distance is affected 

when the embedding dimension is increased by +1, i.e. becomes m+1 ?

If the distance increases then the attractor can unfold in an additional 

dimension (and as a result to be better reproduced)

If the distance does not increase we can accept this distance as 

correct/appropriate.



Method of False Nearest Neighbors

At small embedding dimension the attractor's points are quite close and points 

A, B and C seem to be neighbors. 

Embedding dimension m Embedding dimension m+1

Increasing the embedding dimension by +1 point C remains neighbor of point A 

However point B moves away from the neighborhood of point Α.

Thus point B is a false nearest neighbor of point A. In contrast point C is a true 

neighbor of point A. 



Method of False Nearest Neighbors

Application to the Lorentz system



Choice of reconstruction parameters:

time delay and embedding dimension

Kugiumtzis 1999



Phase space reconstruction based method

Recurrence Plots (RP)

 Graphical tool for the qualitative assessment of time 

series introduced by J.P.Eckmann et al (1987)

 Investigate the phase space trajectory through its 
graphical representation

 Based on the reconstruction of phase space

 Recurrent points: points close in the phase space



Constructing Recurrence Plots

 step 1: Phase Space Reconstruction

 step 2: Calculate the distances between the state vectors

 step 3: Set a cut off value ε for the distance
which are within a distance ε are defined as recurrent points

 Colored RPs are showing the same thing (color scaling recurrence 
points)

RPs are symmetrical by construction to the main diagonal       
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Several characteristic structures 

can appear in a  R.P.

 Single isolated points 

(homogeneity)

 Diagonal lines 

(Trajectory visits the same region of the phase space at different 

times. Maybe deterministic process)

 Horizontal, Vertical lines/clusters

(The state is trapped for some time)

 Periodic patterns 

(periodicities)

 White bands

(abrupt changes in dynamics)



White noise

 Single isolated points (homogeneity)

 Neither diagonal nor vertical lines occur 

Time series

Recurrence Plot



Periodic signal

 Structured diagonal lines parallel to the main diagonal line

 No laminar states

 No isolated points

 Strictly periodical structure



Lorenz (chaotic region)

 Parallel lines to the central diagonal (periodicities, deterministic structure)

 We observe increased laminarity (laminar states)



Brownian motion

 Lines Parallel to the main diagonal (deterministic structures)

 White areas (abrupt changes in dynamics.)



Recurrence Quantification Analysis  

 Zbillut and Weber (1992)

 %recurrence (ratio of the number of recurrence points (pixels) to the total 

number of points (pixels) of the plot

 %determinism (number of recurrent points forming diagonal lines to the 

whole number of recurrent points)

 MaxLine (longest diagonal line segment)

 Trapping Time (average length of the vertical/horizontal  structures)
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RQA outputs

Outputs White noise
(5.000 points)

Sinus
(1.000 points)

Lorenz
(3.500 points)

Brownian
(1.000 points)

%deter 0.12 100 99.7 83.6

TrTime 0 2.5 3.5 3.5

MaxLine 12 897 685 919

Trend -0.007 -0.029 -0.022 -3.5

 All outputs for white noise tend to zero.

 The Trapping time numbers are small for all cases. Not many states stay 

trapped in time.

 Comparing to the number of points the time series have, only Sinus and 

Brownian has long deterministic lines.

 Brownian motion has trend as already known



Case 1 

Identify spatial variations

(spatiotemporal phenomena)

Case 2

Identify transitions 

in the system evolution

Applications of Recurrence plots



Case 1: Experimental Turbulent heated jet
Karakasidis, et al. (2007).Physical Review E, 76(2), 021120.

Jet axis

Overflow

Thermistor

s

Data 

acquisition

Ta

T o
x

y
y

x

Motivation : localization of the jet axis, usually estimated by optical methods. The 

location of the axis permits to identify the dynamics and perform calculations. 

Apart the basic science interest there are also application in engineering such as 

biological purification stations 



Horizontal round heated jet: observables

Instantaneous temperature time series were recorded at
several points across a horizontal line of the jet as a
function of their distance from the center line.

The variation of the characteristic time scales obtained from
the above analysis is associated with and interpreted via
the transitions of the physical state of the flow from the
center line to the boundary of the jet.



Recurrence Plots Jet axis ?

borders

bordersKarakasidis et al 2010
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Recurrence Plots again (2)

Close to the jet axis



Recurrence Plots again (1)
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% determ

-Line segments parallel to the main diagonal (high values of     %determ)

-Asymmetry relative to the jet axis
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Lowest value at the vicinity of 17.5 cm.

And we have a slight anisotropic behavior.

The lowest value could correspond to the region of fully developed turbulence.

Jet axis

Jet boundaries

Small times correspond to short 

living flow structures, which could 

be true in the centerline where 

we have a region of fully 

developed turbulence.

As we go towards the ambient 

fluid, larger scale flow structures 

dominate the flow. 

These flow structures live longer 

and give rise to longer memory 

effects.

In the ambient fluid trapping 

times are very small due to 

thermal fluctuations (no 

appreciable fluid flow).



Case 2: Identify variations 

in the system temporal evolution

Nestos River Water Level analysis

Karakasidis et al 2011



Time series of Nestos River

16 years of daily measurements

Periodic view with trend



Global inspection of the RP

 16 lines parallel to the main diagonal (periodicity)

 Deep blue Recurrence points (close to each other), red Recurrence points 
(more distant to each other) 

 Airplane Structure of the RP (sign of trend in our time series)



Interesting areas

Six interesting areas (system transitions)
(0-650), (650-1300), (1300-2750),(2750-3900), (3900-5500), (5450-6000)



RP of Nestos River water level 

-Global inspection: 16 lines parallel to the main diagonal are observed (periodicity) 

so as the Airplane Structure of the RP (sign of trend in our time series)

-Closer inspection: “Chaotic” regions (650-1300), (2750-3900), (5450-6000): 

deterministic lines are very small . 

Periodic areas (0-650), (3900-5450):parallel lines to the main diagonal 

“Laminar “ area (1300-2750): no large deterministic lines (parallel to the main 

diagonal)



Epoch Analysis

 Quantitative results over sliding windows over the main diagonal (example picture)

 Our Problem

-Window size: 365 points (1 year)

-Window shift: 1 point (day) 

-Number of epochs: 5680 



System transitions (1)

•Pick to pick (small picks) on %recurrence is 84 points, depicts the 

seasonal changes

Indications of chaos (650-1300), (2750-3900), (5450-6000):low 

deterministic lines and determinism, abrupt changes of graphs.

Periodic areas (0-650), (3900-5450): high values of %determinism and 

maximum line (deterministic lines)



System transitions (2)

•State Trapped in time, laminarities (1300-2750)

Laminar state

- Looks like periodic, but it is not: high %determinism, not high   

deterministic lines parallel to the main diagonal (low maxLine)

- It is “trapped” in time: High Tapping Time



Conclusions

 Nonlinear methods seem to identify system transitions in 

time or in time and space 

 Indications of chaos in the systems studied 

 System dynamics are reflected on the R.P.

 Using RQA we can extract useful information about the 

dynamics of a system

 The methodology seems promising  for the study of  

spatiotemporal  and multiscale phenomena in 

engineering and environmental sciences



“Analysis of turbulent heated jets using 
non - linear methods 

and complex network time series mapping”

Charakopoulos, A. Κ., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014). The 

application of complex network time series analysis in turbulent heated jets. Chaos, 24(2), 024408.

Charakopoulos, A. K., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014). Nonlinear 

time series analysis and clustering for jet axis identification in vertical turbulent heated jets. Physical 

Review E, 89(3), 032913.

• Lab. Hydromechanics and Environmental Engineering University of Thessaly

• A. Charakopoulos (Research associate)

• A. Fragkou (Ph.D. student)

• A. Liakopoulos (Professor)  

• Applied Hydraulics Laboratory of the National Technical University of Athens

•P. Papanicolaou (Professor)



Turbulence Fluid Complexity

Large Number of Environmental and Engineering Application of 
Turbulent jet flow



Experimental set up

• Data from different sets of experiments with various initial conditions

and circular and elliptical shaped nozzles

• Ambient water temperature ranged between 18.4-24.6 oC while the jet

water temperature ranged between 58.6 to 61.4 oC

• Temperature data sampling frequency at 80Hz and 100Hz

 

Thermistors 

Jet axis 

Overflow 

Applied Hydraulics Laboratory of the National Technical University of Athens



Vertical heated jet

 Three region behavior

 The first region corresponds to large distances from the jet axis, actually at the

boundary with ambient water named boundary region (BR)

 The second one, the inner region (IR), concerns the region between the

boundary region and the core of the jet,

 The third region, the jet axis region (JR), is the region near the core of the jet

The dynamics of these regions are characterized by the presence of small and

large scale structures (vortices)



Methodology

Linear and Non
Linear Methods for
time series analysis

Complex Network Analysis

Distinguish the state of the fluid region based 

on time series analysis
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time step t
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t)
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Hjorth Mobility and Complexity

Hjorth [1970]

is showing how fast the 

variance varies in a time series

is the mobility of the Mobility; 

captures changes in the stages 

of a time series



Use of measures to perform clustering

Why clustering?

Different measures take into account better dynamical features

of the system.

Clustering Method:

Single Linkage Hierarchical Agglomerative Clustering.

No assumption is made apriori on the number of the groups.

Clustering properties:

simple statistical measures, Hurst exponent, Hjorth parameters and

cumulative mutual information (normalized quantities)



Cases studied

 Five set of experimental temperature fluctuations in vertical

turbulent heated jets with different initial parameters.

General
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Case 1

 Mutual Information

 Cumulative Mutual Information

0 2 4 6 8 10 12 14
0

5

10

15

20

 

 

Time series x=38.40 

correspond to jet axis 

region
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Time series x=38.40 

correspond to jet axis 

region

X=38.40 

correspond to 

jet axis region

X=38.40 

correspond to 

jet axis region

• Lowest values for the center line

region

• We know that near the jet

centerline turbulence is fully

developed and there appear

many short-lived small scale

turbulent structures, while near

the jet boundary the large scale

flow structures live longer

• At the jet axis region the memory

of the flow structures is lost fast

while at locations close to the

boundaries memory lasts longer.



Turbulent jet

 Near to the jet axis the turbulence is fully

developed and in this region there appear many

short-lived small scales turbulent structures

appear, while we move towards from the inner to

boundary the large scale flow structures live

longer

Large 

structure

Small 

structure

 The lowest values of the measures are expected

close to the jet region and especially in the jet axis

since in this region there are many short-lived

and small vortexes while presence of long-life

large vortexes exist close to the boundaries

Jet axis



Case 1 - Hurst exponent 

Time series along the horizontal axis

Near the jet

• In general persistent behaviour (H>0.5)

• Lower persistence region corresponding to the jet axis region since the

short living structures destroy long memory

• At more distant positions larger and longer living structures result in high

values

 

Thermistors 

Jet axis 

Overflow 



Case 1 - Hjorth Mobility & Complexity

Time series along the horizontal axis

Near the jet

• Mobility larger in the central region. Mobility is showing how fast the variance

varies in a time series, i.e. faster in the centre slower at larger distances- this

is related to the short living structures present in the axis region.

• At more distant positions larger and longer living structures result in high

values

• Complexity captures changes in the stages of a time series
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Case1 - Clustering
Identifying different regions of the jet

Shape of nozzle To(
oC) jet Ta(

oC) ambient

Round 1,5cm 58.60 24.60

Name of time series

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Location at the horizontal axis

32,4 33,4 34,4 35,25 35,4 36,25 36,4 37,25 37,4 38,25 38,4 39,25 40,25 40,5 41,25 41,5 42,5 43,5 44,5 45,5 46,5
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Other Cases

Hurst exponent   

Case 5Case 4

Case 3

Time series along the horizontal axis

Time series along the horizontal axisTime series along the horizontal axis

Case 2

Time series along the horizontal axis

Near the jetNear the jet

Near the jet

Near the jet

Lowest values



Complex Networks

Transforming time series into Complex Networks 

Seems a promising 
technique

Can be further employed 
in the future for 
spatiotemporal analysis



Complex Networks

Some notions 

 A Network (graph) G=(V,E) consists of a set of nodes (V) that

are interconnected with links or edges (E)

 A Νetwork of N nodes can be described by the NxN adjacency

matrix A=[aij]

aij=1 if the link i – j exists,

aij=0 otherwise



Complex Networks and time series

Construction of the Complex Networks (Xiaoke Xu et. al (2008)

 Time series

 Embedding the time series in an
appropriate phase space and take
each phase space point as a node in
the network

 Select a fixed number of nearest
neighbors for each point (node) and
connect each point with its neighbors
to form a complex network

 Construct the adjacency matrix

 Construct the complex network 117



Complex Networks Time Series

Construction of the Complex Networks (L. Lacasa et. al (2008))

Visibility graph method: 

Let x(ti)i=1,…N  is the time series 
. 
Two nodes x(ti) and x(tj) in the time series 
have visibility and become two connected 
nodes in the associated graph, if any other 
data (tk, x(tk)) placed between them 
(ti<tk<tj) fulfills

( ) ( ) ( ( ) ( )) k i
k i j i

j i

x t
t t

x t x t x t
t t


  



i and j are connected if one can draw 
a straight line in the time series 
joining the two points i and j, such 
that, at all intermediate points 
(ti<tk<tj), x(tk) falls below this line



Complex Networks

Properties of Complex Networks 

 Shortest path (dij): Corresponds to the minimal distance between

all paths that connect nodes i and j

dij is the red line (3) and

not the green one (4)

 Average path length (l): Is the average number of steps along the
shortest paths for all possible pairs of network nodes. It measures
the efficiency of information or mass transport on a network.
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Complex Networks

Properties of Complex Networks 

 Diameter (D): The maximum length between all shortest paths

D=max(dij)=3

 Degree (Ki): The degree Ki of a node i is the number of connections
of the node to other nodes

K1=2, K2=2, K3=5, K4=1, K5=2, K6=4

i j
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Complex Networks

Important properties of Complex Networks 

 Degree distribution: P(k) of a network specifies the fraction of

nodes having exactly degree k

 Clustering coefficient: Ci is the ratio between the number of links E

connecting the nearest neighbors of i and the total number of

possible links between these neighbors.

Ki =5, ei=3

Ki is the degree of i, ei is the number of links directly connecting neighbors of i

The clustering coefficient of a network C is the average of Ci over

all nodes

 
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Complex Networks properties

 Modularity (M): a measure of the

structure of a network. It

measures the strength of division

of a network into modules (also

called groups, clusters or

communities).

 Networks with high modularity

have dense connections between

the nodes within modules but

sparse connections between nodes

in different modules.

Newman M E J PNAS 2006;103:8577-8582



Complex Networks

 Main Idea: Different dynamical systems demonstrate distinct local

structures in phase space.

 Time series with different dynamic (recorded from different region

of the jet) exhibit distinct topological network structures



Complex Networks: Results

Near the boundary Near the jet line

Different structure



Complex Networks: Results

 Visibility method

 Peak of the value are due to the interaction of small heated eddies to the bigger
vortex

 Throughout the development of the time series if there exists a peak and the
previous and next value would not be located very close this data tend to have
higher degree than the other data.

 At the network each point represented as a hub with different degree

 Physically this means that at these points we have a strong influence of a heated
vortex to less heated fluid



Complex Networks: Results

Case 1

Location of time series at horizontal axis

In the jet axis region : fully developed turbulence  increased presence of
short-lived small scales  change of states occur faster  successive states
are less linked

As we move towards to boundary large scale longer living structures persist
 change of states take more time to occur

Jet axis

Lowest values of

Diameter : The maximum length between 
all shortest paths
Average path length (l): average number of 
steps along shortest paths for all possible 
pairs of network nodes



Complex Networks: Results

Case1

Location of time series at horizontal axis

Jet axis

Clustering coefficient: Ci is the ratio between
the number of links E connecting the nearest
neighbors of I and the total number of
possible links between these neighbors.

Due to presence of short lived small
structures connections between successive
sates are reduced compared to regions where
long-lived structure persist.

Modularity (M): a measure of the structure of a network. It measures the 
strength of division of a network into modules (also called groups, clusters or 
communities). 
Short live structures result in fewer well defined separations. More 
interconnections are present.



Other Cases- Diameter and Average path length 

2nd Case Study

5th Case Study4th Case Study

3rd Case Study

Jet axis
Jet axis

Jet axis Jet axis



Case Studies

2nd Case Study

5th Case Study4th Case Study

3rd Case Study

Clustering Coefficient  and  Modularity 

Jet axis

Jet axis

Jet axis
Jet axis



Conclusions

Case Study Shape of 

nozzle

Measurement station 

attributed to the jet axis 

using the clustering 

procedure (present study)

Estimated 

location of jet 

axis using a 

Gaussian fit 

1st Round 38.25 37.75

2nd Round 37.70 38.00

3rd Elliptical 38.00 38.00

4th Elliptical 37.50 38.00

5th Elliptical 39.00 38.20

Results of jet axis location using our methodology and comparison with 
estimations from hydromechanics methods



Conclusions

Aim: Distinguish the jet axis region from the regions near the boundary (ambient
water) and the intermediate regions

 Various measures can provide information about various regions of the jet as well
as about the location of the jet axis

 Using a combination of all the measures along with a clustering procedure can
discriminate far better various regions of the flow based on a different behavior
and lead to a methodology for obtaining the location of jet axis

 Analysis is capable of extracting information and can be useful for a more clear
discrimination of the time series near jet axis from others that correspond to the
region near the boundaries

 This methodology seems quite promising for application in complex flows, as well
as in applications where several different state zones exist in a physical system
where one can have access only to spatiotemporal data

 The time series derived from different regions along the horizontal line, exhibit
different topological features of the network
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