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Time series

> An observed dynamical system (simulated /
experimental / field measurements ) results in
observables varying in time - time Sseries

> In engineering and environmental systems we
are aware of system monitoring

> Do time series contain information about the
underlying system dynamics that can be useful?



Dynamical System

INPUT OUTPUT
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Example (1) - Pendulum
Known Dynamical System - Time Series
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Example (1) - Pendulum

from time series to phase space
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Phase space

Velocity

Plot for every time t all points(8, w)
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Example (2)
Known dynamical system = time Series

> Lorentz system (chaotic)

10 R i )
o=10, b= 3, and r = 28.

ll:; :

o(ry — 1),

r1ro — brs,

Initial conditions




Example Lorentz (cont'nd)

X, (1 X3(t)

Phase space

X,(t)




Example Lorentz (cont'd)

Phase space variation due to variation of the r parameter (2-D projections)

Point attractor Periodic orbit Chaotic (strange)
attractor

Geometry can help detect transitions!



Utility of phase space

It gives us an idea about all the allowed states of our
system

Phase space

Knowing one or more variables
we can estimate the others

Position

Velocity

It is a geometrical object > we can use geometrical
tools to compare different systems or states

If an attractor exist we do not need to explore the whole
phase space




Dynamical System (Practically)

X,(1) > X, (t+dt)
X,(t) > ?
f ( ) - X,(t+dt)
’) -
> X, (t+dt)
? Xn(t) >
We have in general
We do not know the access only to several
We do not know the laws that describe the measurable quantities
number of variables system evolution of the system

that describe the

system state

observables




Several Practical Aspects

> The guantity we observe Is a system
variable or a function of several system's
variables?

> In some cases yes, but not always.

> The various observed quantities are
Independent or interdependent?




Inverse problem
Known time series — unknown dynamical system
Example (1)

1000 2000 3000 4000 5000 6000 7000

Water level of river Nestos (Northern Greece)
Temenos measurement Station : 01/01/1980 - 30/05/97




Questions

> Can we extract from one time series useful
Information about the simplest model system
that can describe the real system ?

> The time series originates from a deterministic or
stochastic system?

> The underlying system Is linear or noen-linear?




What can be the results of the analysis?

>  Elements of system dynamics:

characteristic times/scales of the underlying system
>  System ldentification, Change of State
>  Prediction of future values

>  System Control




What can be the results of the analysis?

>  Elements of system dynamics:

characteristic times/scales of the underlying system
>  System ldentification, Change of State
>  [emporal correlations

>  Prediction of future values

>  System Control




\What you already know to do

Statistical analysis mean value, standard deviation, skewness, kyrtosis

The problem is that statistical analysis
gives the same results for different temporal variations

Just order the data =
same statistic but..




Temporal behavior - linear methods:
regression analysis

Relation between successive measurements Is linear

X (t+dt)=A*X(t)+B
Or dependence on several previous measurements
X(t+dt)=A *X()+A*X(t-dt)+... +A*X(t-Ndt)+B

And for a system
Xa(t+dt)=Agy "Xy (0)+A "X (t)+. ..+ AN Xy (1) +B,
Xo(t+dt)=Agy "X (1) +A% " Xo(t)+... A" XN (D) +B;

X (EHD=An Xy O+ A KO+ .. +A Xy (O+By




Unfortunately nature
IS In general more complex

and In general non-linear



Time and Geometry
In asymptotic behavior of the system In time —> =

> (@) convergence toward (or repellence from) given points of
equilibrium (points X where f () (X)=0 ) depending on their state

stable or unstable equilibrium.

> (b) oscillations that are periodic, If the trajectories are
characterized by d frequencies w;, w,, ..., Wy With rational ratio
between them, or nearly periodic when frequencies present

irrational ratios.

> (c) chaotic behavior kwhere the motion in the phase space IS
aperiodic , finite and Is characterized by a continuous Power

spectrum and sensitive dependence on initial conditions. P(f)=Af®



Attractors

> attractor : Set of points In the phase to which
tend asymptotically all trajectories in the phase
Space for a range of initial conditions

> basin of attraction of an attractor: the set of initial
conditions whose evolution leads to the attractor.

> he asymptotic form of the trajectory in phase
space can be an attractor.




Point attractor

Time series Phase space

Limit cycle attractor
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Toroidal attractor

Time series Atrractor
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LINEAR TOOLS

Autocorrelation function

& N

> [x(iAe + 1) - x ] x(iar) - x] e At
R@=N”1N x N;MZ)

§ 2l -5
Power Spectrum
) : " i2nf j
P(f)=N[A®) 0=
=

Transformation from time domain space to frequency domain

F(t) > O(F)




Continuous Fourier Transformation

H()= " h(t)e*"dt

h(t)= [ H(f)e*"df

Discrete Fourier Transformation

N-1
= >» he
k=0

1 N -1 :
hk _ NZ Hne—kan/N

2 7kn/N




Discrete Fourier Transformation (DFT)

N/2
X, = L4 Z a, cos(zﬂmnj +b, sin(zﬂmnj
2 m=1 N N

2 3 2
amz—ancos( mnnj
Nn:I N

N
b, ==Y, sm(zm”)
N n=1 N

S =a.+b’  Power Spectrum




Example 1

Initial function:
Sine wave

Fourier Transform
Delta function

60 80

frequency

30



Y=3*sin(2m3t)+4*sin(2m6t)+5*sIin(21116t)




Utility of Fourier Transform

> Find Characteristic Freguencies I.e. times

> Extract periodic or seasonal components

> In many cases we can distinguish a near
periodic time series from a chaotic one.




Power spectrum and Power law behavior

For several phenomena
> P(f)=A*k

> =1 = Self Organized Ciriticality (Bak 1992)

> Variation of the value of the exponent [ Is an
Indicator of the change of the system state

> The Importance of this behavior :
there IS not one ore more specific freguencies
UL a continueus range with variable contribution




Power spectrum example: Lorenz system

r=24.00 =24.00

Non chaos
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AND NOW
SOME APPLICATIONS




Application : rainfall

DBS rain event, Palaiseau
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Figure 1. Rain event observed by the DBS on 12 May
2009, beginning at 04 h 05, in Palaiseau.

(Verrier et al 2011)
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Temporal analysis: Hurst Exponent

If T(i), i=1,...,N, is a time series T.
For every n, 2sn<N, we denote by <T>_ the mean value of the first n elements of
the time series T, i.e.,

The range of the accumulated deviation from the average level is the difference
between the maximum and the minimum cumulative deviations over n periods
and is denoted by Rn, i.e.,




Hurst Exponent (cont'd)

> The function Rn generally increases as a function of n. Let us also denote
by Sn the standard deviation of the first n elements of the time series {T(j)},
le.,

In the case of a fractional Brownian motion in the limit of large n,

(Ry/Sp)ec(n)F

with 0<H<1, the Hurst exponent.

We can plot log(Rn/Sn) vs. log(n) and, in the case of scaling, estimate the
value of the Hurst exponent.



Significance of Hurst exponent

> For time series with consecutive values generated by
statistically independent processes with finite variances
H=0.5 (uncorrelated or white noise).

> 0.5<H<1 processes where fluctuations in subsequent
values are positively correlated (persistence), e.g. large
positive values are followed by large positive values (or
large values) and vice versa.

» 0<H<0.5 corresponds to processes where fluctuations in
subsequent values are negatively correlated (anti-
persistence) e.g. large positive values are followed by
large negative values (or very small values) and vice
versa.




Hurst exponent application

 Analysis of rainfall radar data

« Analyse the persistent and chaotic character of rainfall over
Rhoéne river valley.

Examine Area

Altitude {(m)
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The role of the non-linear relief-rain interaction in the rainfall intensity structure.
Molinie, G. Karakasidis, T., Triantafyllou, A. Creutin, J-D., Anquetin, S., EGU General
Assembly 7-12 April, 2013 Vienna,



Examine area cross Sections

Altitude (m)

1980 2000

1940 1960

1920

o
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1880

1860

700 720 740 760 780 800 820

785 810
X (km) 790  'sos
795

Vertical cross sections above Rhone river valley
Resolution of 1km x 1km




CUMULATIVE RAINFALL 15" 06 11 2011 R ad ar I m ag e

Resolution 1km x 1km

150 rain time series
At each vertical cut

Alttude ¢mi

28 48 83 144 251 4386




Hurst map

Hurst Exponent 06_11 2011

800

X (km)

Mountains seems to block persistence and complexity




Cross section at X=805km

50

' o
1921 1931 1941 1951 1961 1971 1981
¥ position at X=805

Cumulative rainfall at x=B05km

T

193 1941 1951 1961 1971 1981

Between the mountain crests
Hurst Exponent shows the
lowest values in this event.

Hurst

Cumulative rainfall increases
almost above the first big
mountain range (its natural due
to turbulence presence)

The relief change has an influence
on Hurst parameters

Hurst parameter behaviour reveal that the foothill
presence creates a perturbation in rainfall structure;
because of the variation of height rather than the
height itself



Application: identify different spatial behavior:
water level of river Nestos




River water level time series at three positions

The similarities were
found to be linked to
similarities in the
ground characteristics
(slopes, materials)

H=0.465




Application In spatiotemporal variation
Macroscopic Fluid Flow

Time-series analysis of temperature fluctuations in a
horizontal round heated jet.

Data
acquisition

The ambient water temperature varied between 18-20°C, while the jet water
temperature was around 60°C. A jet nozzle of 0.65cm diameter was used.
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Question :
where the jet axis is located since the boundaries are not well defined ?




Horizontal round heated |et:
observables

Instantaneous temperature time series were recorded at
several points across a horizontal line of the jet as a
function of their distance from the center line.

The variation of the characteristic time scales obtained from
the above analysis is associated with and interpreted via
the transitions of the physical state of the flow from the
center line to the boundary of the jet.



Turbulent fluctuations: Power Spectrum

a narrow but distinct region

: where we have
slope -5/3 approximately conditions of
fully developed

homogeneous turbulence.

another region at the higher
frequencies of the
spectrum with higher slope
(close to 3). Analogous
— X=16.5cm ¥ | behavior have been
—— X=17.5XM «—— L observed in vertical jet flow
—X523.5em 4 [Papanicolaou et al. 1987]
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Non linear Temporal Analysis:
Average Mutual infermatien (AMI)

Definition

I(X.Y) = ()} Py (X, )
( ) ;p e Px(X)py(¥)

px(X) the probability that X=X, py(y) the probability that Y=y
Py (X,Y) the joint probability X=x and Y=y

The AMI takes only positive values.

We choose as time delay the time corresponding to the first local
minimum of AMI (there correlations become small for the first time)

AMI takes into account not only linear. correlations between
SUCCESSIVE measurements




Application In turbulent jet

——X=15.5cm
——X=16.5cm
—— X=17.5cm <— Jet axis ~
——X=18.5cm
——X=19.5cm
—X=23.5cm
—X=11.5cm
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Time Delay

Close to the jet centerline memory is lost fast. At locations far from the
centerline memory is large.

Short memory corresponds to short living flow structures - in the axis
region we expect to have fully developed turbulence.

As we go towards the ambient fluid, larger scale flow structures dominate
the flow. These flow structures live longer and give rise to longer
memory effects.
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Phase space reconstruction

Original

N

phase space s, =f(s,)
5;
S:’+1

Observed
time series

The invariant quantities of the two spaces must remain the same




Example of Phase space: The Lorenz System

X, proportional to the intensity of the convective motion,
X, proportional to the temperature difference between ascending and
descending currents,

X5 proportional to distortion of vertical temperature profile from linearity.

0 Prandtl number
r normalized Rayleigh number
b gives the size of the region approximated by the system

For values 0=10 r=28 ka1 b=8/3 the system becomes chaotic, i.e. a small
change in initial conditions can result in a large change in the output.



Xq(t) X, (t) X4(t)

For every time t plot all points (X;, X,, X3)

Phase space of the Lorenz system




Phase Space Reconstruction (2)

> We are interested in
metric (topological) properties such as the dimension of the attractor

> Itis not necessary to reconstruct the full phase space given that in

the majority of cases the system presents an attractor with smaller
dimension

e The reconstructed phase space has the following properties

— Each point is mapped through the dynamics to a unique successive point

— There is a smooth and nonsingular transformation between the
reconstructed space and the original space.

— This methodology was introduced by Packard et al (1980) and Takens
(1981)



Phase space reconstruction (1)

> If the system Is deterministic it Is reasonable to expect that each
measurement depends on a given number of previous
measurements, I.e. X =f(X, X 1, X5, -, X )

> and that for small At these values include information equivalent to

that of several derivatives that could be described by the system

evolution
df ~ Xn _Xn—l

dt At

d’f X,-2X,_,+X,,

dt* (At)

d’f X,-3X,,+3X,,-X,,

dt (At)’

d'f X,-4X,,+6X,,-4X, ,+X, ,
dtt (At)*




Method of Delays

> The reconstruction of the phase space Is done via the construction
of a m-dimensional vector states S; from the time series in the
following way:

S; = [Xi ) Kisrr Kigogre o Xi+(m—1)fJ

> Parameters necessary for the reconstruction

o A)embedding dimension m (in what space | plot my points)

o B)time delay 1 (how close the timeseries points are)




Choice of time delay 1

If 7 1S too small then successive time series values are unnecessarily
strongly correlated and the chosen components do not contain
additional information

If 7 IS too large the values of the time series may become
unnecessarily extremely

An empirical rule of thumb that has been established for the chooice

of 1 IS to choose the smallest 1 value for which the components of

the reconstructed state vector X, = [xl,, X, Xy yerey Xy (m_l)TJ
become uncorrelated.

Two methods are employed
o autocorrelation function
o average mutual infermation



Choice of time delay:
Autocorrelation function (AF)

> We choose the time 1 for which AF Is zero for the first time.

> It AF does not fall to zero guite fast we chose as 1 the time for
which it falls to 1/e (approximately 40%) of the value for 1=0.

Autocorrelation of x-Lorenz

> Remember: AF takes into account only linear correlations
between successive points of the time Series.




Example of choice of T

> Lorentz system (only one component)

Losie systen s—artable, 31 sprms

a=10, b=28, ¢=8/3

Autocorrelation of x-Lorenz Mutual information of x-Lorenz




Choice of embedding dimension m

Takens’ theorem sets the condition m=2D+1 where D is the attractor
dimension.

Other researchers set a more loose condition: m=D

If we choose small embedding dimension m the attractor will be
“‘squeezed” and will present self crossing, thus not being equivalent to
the original attractor.

It the embedding dimension Is larger than what is necessary. the
corresponding calculations will be unnecessarily more complex and
time consuming.




Method of False Nearest Neighbors

The principle of the method (Abarbanel 1993)

Two points S;, S;in the reconstructed phase space with embeding
dimension m are located at a distance R. How this distance is affected
when the embedding dimension is increased by +1, i.e. becomes m+1 ?

If the distance increases then the attractor can unfold in an additional
dimension (and as a result to be better reproduced)

If the distance does not increase we can accept this distance as
correct/appropriate.



Method of False Nearest Neighbors

Embedding dimension m Embedding dimension m+1

At small embedding dimension the attractor's points are quite close and points
A, B and C seem to be neighbors.

Increasing the embedding dimension by +1 point C remains neighbor of point A
However point B moves away from the neighborhood of point A.

Thus point B is a false nearest neighbor of point A. In contrast point C is a true
neighbor of point A.



Method of False Nearest Neighbors

Application to the Lorentz system

X-Lorenz: FNN, .= u.1

6 8
embedding dimension m




Choice of reconstruction parameters:
time delay and embedding dimension

5, =—als, - 5,) Example: Lorenz system (continuous)

5y = =553+ bs) — 5, Ovtimal 7 Method of delays, m=3
5, = 5,5, — €5, pumal 7. ~1 =5
a=10, b=28, c=8/3 + Lorenz, MODIE.4) * Lorenz, MODIZ,E)

" ) - -2}
Projection oM
’ N REL‘(:-rlSIi'H‘v”” =10
:1.1:= SI ﬁr;j ¥ Lomenz, MU 4, 1u)

Lossane systen x—varaide, 310 serms

Kugiumtzis 1999




Phase space reconstruction based method
Recurrence Plots (RP)

> Graphical tool for the gualitative assessment of time
series introduced by J.P.Eckmann et al (1987)

> Investigate the phase space trajectory through its
graphical representation

> Based on the reconstruction of phase space

> Recurrent points: points clese in the phase space



Constructing Recurrence Plots

= step 1: Phase Space Reconstruction
= step 2: Calculate the distances between the state vectors

= step 3: Set a cut off value ¢ for the distance
which are within a distance € are defined as recurrent points

= Colored RPs are showing the same thing (color scaling recurrence
points)

=sRPs are symmetrical by construction to the main diagonal



Several characteristic structures
can appear ina R.P.

Single isolated points
(homogeneity)

Diagonal lines
(Trajectory visits the same region of the phase space at different
times. Maybe deterministic process)

Horizontal, Vertical lines/clusters
(The state Is trapped for some time)

Periodic patterns
(periodicities)

White bands
(abrupt changes In dynamics)




White noise

Time series

500 1000 1500 2000 4000 4500

Recurrence Plot

> Single isolated points (homoegeneity)
> Neither diagenal nor vertical lines occur,

182
500 1000 1500 2000 2500 3000 3500 4000 4500 5000



Periodic signal

L
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A

50 100 150 200 260 300 350 400 -]':II 500 I-_':II GO0 BEO 700 750 800 850 900 950 = -
100 200 300 400 500 KOO 700 GO0 900

Structured diagonal lines parallel to the main diagonal line
No laminar states

No isolated points

Strictly periodical structure

YV V V VY



Lorenz (chaotic region)

1000 1500 2000

> Parallel lines to the central diagonal (periodicities, deterministic structure)
> We observe increased laminarity (laminar states)



Brownian

> Lines Parallel to the main diagonal (deterministic structures)
> White areas (abrupt changes in dynamics.)



Recurrence Quantification Analysis

Zhbillut and Weber (1992)

Oporecurrence (ratio of the number of recurrence points (pixels) to the total
number of points (pixels) of the plot

1 (i, j)recurrent
R, ={ (i, J)

, otherwise

Yodeterminism (number of recurrent points forming diagonal lines to the
whole number of recurrent points)

MaxLine (longest diagonal line segment)
L. =max({l;i=1..,N})

Trapping Time (average length of the vertical/norizontal structures)




ROQA outputs

Outputs | White noise Sinus Lorenz Brownian
(5.000 points) (1.000 points) | (3.500 points) (1.000 points)
Sbdeter 0.12 100 99.7 83.6
TrTime 0) 2.5 3.5 3.5
MaxLine 12 897 685 919
Trend -0.007 -0.029 -0.022 -3.5

> All outputs for white noise tend to zero.

> The Trapping time numbers are small for all cases. Not many states stay.
trapped in time.

> Comparing to the number of points the time series have, only Sinus and
Brownian has long deterministic lines.

> Broewnian motion has trend as already known




Applications of Recurrence plots

Case 1
ldentify spatial variations
(spatiotemporal phenomena)

Case 2
ldentify transitions
INn the system evolution




Case 1: Experimental Turbulent heated jet
Karakasidis, et al. (2007).Physical Review E, 76(2), 021.120.

Overflow

_JL,E@JL
[]ll

1F= '—']l‘"—H'

i _Ii'

Motivation : localization of the jet axis, usually estimated by optical methods. The
location of the axis permits to identify the dynamics and perform calculations.

Apart the basic science interest there are also application in engineering such as
biological purification stations



Horizontal round heated jet: observables

Instantaneous temperature time series were recorded at
several points across a horizontal line of the jet as a
function of their distance from the center line.

The variation of the characteristic time scales obtained from
the above analysis is associated with and interpreted via
the transitions of the physical state of the flow from the
center line to the boundary of the jet.



Recurrence Plots |
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Karakasidis et al 2010



Recurrence Plots again (2)

Close to the jet axis

16.5 cm

2000 3000 4000 1000 2000 3000 4000 5000

1000 2000 3000 4000 5000 6000
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Recurrence Plots again (1)

Far from the jet axis

1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

Adbddbiloadvmwasaaom
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sensor position

-Line segments parallel to the main diagonal (high values of  %determ)
-Asymmetry relative to the jet axis



Trapping time

Small times correspond to short
living flow structures, which could
be true in the centerline where
we have a region of fully
developed turbulence.

As we go towards the ambient
fluid, larger scale flow structures
dominate the flow.
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These flow structures live longer
and give rise to longer memory
effects.

In the ambient fluid trapping
16 18 times are very small due to

position (cm) thermal fluctuations (ﬂO

appreciable fluid flow).

Lowest value at the vicinity of 17.5 cm.
And we have a slight anisotropic behavior.

The lowest value could correspond to the region of fully developed turbulence.



Case 2: ldentify variations

ution

In the system temporal evo

b n‘%}'.i, e -
-S53 pEGz.

Nestos River Water Level analysis

Karakasidis et al 2011

0.3923

0.5841



Time series of Nestos River

RO0 1000 1600 2000 2500 3000 3500 4000 A500 RO0O0 RROO ROOO
Time [(units

16 years of daily measurements
Periodic view with trend




Global inspection of the RP

Y

.I: L = ‘ E 1 =
F

' 4,33
1000 2000 3000 4000 LOOO 6000

16 lines parallel to the main diagonal (periodicity)

Deep blue Recurrence points (close to each other), red Recurrence points
(more distant to each other)

Airplane Structure of the RP (sign of trend in our time series)




Interesting areas

[ - X l.j_f,_
g1 + 5
000 & 5

Six Interesting areas (system transitions)
(0-650), (650-1300), (1300-2750),(2750-3900), (3900-5500), (5450-6000)




RP of Nestﬁ)s RIver water level

000 35
H

:
1000 Bl
.

-Global inspection: 16 lines parallel to the main diagonal are observed (periodicity)
so as the Airplane Structure of the RP (sign of trend in our time series)

-Closer inspection: “Chaotic” regions (650-1300), (2750-3900), (5450-6000):
deterministic lines are very small .

Periodic areas (0-650), (3900-5450):parallel lines to the main diagonal

“Laminar “ area (1300-2750): no large deterministic lines (parallel to the main
diagonal)



Epoch Analysis
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Quantitative results over sliding windows over the main diagonal (example picture)
Our Problem

-Window: size: 365 points (1 year)

-Window: shift: 1 poeint (day)

-Number: of epochs: 5680




System transitions (1)

2500
Epoch

650 1300

*Pick to pick (small picks) on %recurrence Is 84 points, depicts the
seasonal changes

Indications ofi chaos (650-1300), (2750-3900), (5450-6000):Iew
deterministic lines and determinism, abrupt changes ofi graphs.

Periodic areas (0-650), (3900-5450): high values of Y%determinism and
mavimiim line (deterministic line<g)




System transitions (2)
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Conclusions

Nonlinear methods seem to identify system transitions in
time or In time and space

Indications of chaos In the systems studied
System dynamics are reflected on the R.P.

Using ROQA we can extract useful information about the
dynamics of a system

The methodology seems promising for the study of
spatiotemporal and multiscale phenomenain
engineering and environmental sciences




“Analysis of turbulent heated jets using
non - linear methods

and complex network time series mapping”

« Lab. Hydromechanics and Environmental Engineering University of Thessaly
 A. Charakopoulos (Research associate)
* A. Fragkou (Ph.D. student)
* A. Liakopoulos (Professor)

» Applied Hydraulics Laboratory of the National Technical University of Athens
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application of complex network time series analysis in turbulent heated jets. Chaos, 24(2), 024408.

Charakopoulos, A. K., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014). Nonlinear
time series analysis and clustering for jet axis identification in vertical turbulent heated jets. Physical
Review E, 89(3), 032913.



Turbulence Fluid Complexity

Large Number of Environmental and Engineering Application of
Turbulent jet flow




Experimental set up

Overflow

« Data from different sets of experiments with various initial conditions

and circular and elliptical shaped nozzles

« Ambient water temperature ranged between 18.4-24.6 °C while the jet

water temperature ranged between 58.6 to 61.4 °C

« Temperature data sampling frequency at 80Hz and 100Hz

Applied Hydraulics Laboratory of the National Technical University of Athens



Vertical heated jet

Energy
transfer

s Three region behavior
» The first region corresponds to large distances from the jet axis, actually at the
boundary with ambient water named boundary region (BR)
» The second one, the inner region (IR), concerns the region between the
boundary region and the core of the jet,
» The third region, the jet axis region (JR), is the region near the core of the jet

The dynamics of these regions are characterized by the presence of small and
large scale structures (vortices)



Methodology

Distinguish the state of the fluid region based

on time series analysis

Linear and  Non
Linear Methods for Complex Network Analysis
time series analysis <

\ %




Hjorth Mobility and Complexity

time domain parameter
1 f(t)
l = O
NG
5 ‘ | I\J-/‘ \
N \ _ is showing how fast the
a 0.0 A | ili
i i) Ga mobility | WENNND \ariance varies in a time series

, captures changes in the stages
G of a time series

A O
| / . /—%L complexity |HENNND s the mobility of the Mobility:
ria

Hjorth [1970]



Use of measures to perform clustering

Why clustering?

Different measures take into account better dynamical features

of the system.

Clustering Method:

Single Linkage Hierarchical Agglomerative Clustering.

No assumption is made apriori on the number of the groups.
Clustering properties:

simple statistical measures, Hurst exponent, Hjorth parameters and

cumulative mutual information (normalized quantities)



Cases studied

General
v' Five set of experimental temperature fluctuations in vertical

turbulent heated jets with different initial parameters.

Overflow
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v Mutual Information | x=38.40
correspond to
2r i jet axis region |

 Lowest values for the center line
region

« We know that near the jet
centerline turbulence is fully
developed and there appear
many short-lived small scale
turbulent structures, while near
the jet boundary the large scale
flow structures live longer 20

X=38.40 —
* At the jet axis region the memory | 4 correspond to x=33.40
. jet axis region
of the flow structures is lost fast
while at locations close to the
boundaries memory lasts longer.

T

10

T

v' Cumulative Mutual Information .




Turbulent jet

v' Near to the jet axis the turbulence is fully
developed and in this region there appear many
short-lived small scales turbulent structures
appear, while we move towards from the inner to
boundary the large scale flow structures live

longer

structure
v' The lowest values of the measures are expected structure
Jet axis

close to the jet region and especially in the jet axis

since in this region there are many short-lived
and small vortexes while presence of long-life

large vortexes exist close to the boundaries



Case 1 - Hurst exponent

15

1,3

—s=—Hurst ——DFA

32,40 |
33,40
34,40
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Near the jet
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44,50 -

37,25

45,50
46,50

Overflow

=

Time series along the horizontal axis

(@]

In general persistent behaviour (H>0.5)

Lower persistence region corresponding to the jet axis region since the

short living structures destroy long memory

At more distant positions larger and longer living structures result in high

values



Case 1 - Hjorth Mobility & Complexity

—=-Hjorth complexity

Hjorth mobility
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Time series along the horizontal axis

Overflow

Mobility larger in the central region. Mobility is showing how fast the variance

varies in a time series, i.e. faster in the centre slower at larger distances- this
IS related to the short living structures present in the axis region.

At more distant positions larger and longer living structures result in high

values

Complexity captures changes in the stages of a time series




Casel - Clustering
Identifying different regions of the jet

Shape of nozzle T,(°C) jet T,(°C) ambient
58.60 24.60

Na ne of time series

1|2 3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18

|19|zo|21

Locatior at the horizontal axis

32,4 | 334 | 344 | 35,25 | 35,4 | 36,25 | 36,4 | 37,25 | 37,4 ! 38.25 ! 38,4 | 39,25 | 40,25 | 40,5 | 41,25 | 415 | 42,5 | 435

| 445 | 455 | 46,5

| " { { { L L L L { { L L L L { [ s s s € [ [

Conventional hydrodynamic |

methods jet axis at
x=37.75Ccm
Region far tar Region near Jet axis Jet axis / |
from the jet 1ol to jet axis region time series 1
axis 8
S
@ 1 -

AN

—

Boundary region

O.zﬁ = 11 | ﬁ

13 4 14 6 12 7 8 9 11 :0 3 15 16 2 17 1 19 20 21 18
Name of time series




Other Cases

Case 2

Hurst exponent
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Case 4
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Complex Networks

Transforming time series into Complex Networks

Seems a promising
technique

Can be further employed
in the future for
spatiotemporal analysis




Complex Networks

Some notions

v A Network (graph) G=(V,E) consists of a set of nodes (V) that

are interconnected with links or edges (E)

v' A Network of N nodes can be described by the NxN adjacency
matrix A=[a;/

a;=11f the link i — j exists,

a;=0 otherwise A =

o O O = O
o O = O =
o O O O +—
o O = O O
o = O O O




Complex Networks and time series

Construction of the Complex Networks (Xiaoke Xu et. al (2008)

. . Do00anRof et 99000800000 00? pP0% (0% aan il

v’ Time series il 700 ol Ve Fllo it i Fie!

AR NN ‘-‘“l‘.,“ I (AL AL

. . . . (Y AR ):' Lot

v' Embedding the time series in an qoo";:%io‘;oo gf)gt 10{; R0l G0 e il &

appropriate phase space and take

each phase space point as a node in AREREAERIEE
the network ACIERREE I RIERRSL
Select a fixed number of nearest AT R ER L ERAN
neighbors for each point (node) and e
connect each point with its neighbors Slo [ [olo (o] ' [°
to form a complex network e

Construct the adjacency matrix

Construct the complex network

\%



Complex Networks Time Series

Construction of the Complex Networks (L. Lacasa et. al (2008))

Visibility graph method:
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Let x(ti)i=1,...N 1is the time series
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Two nodes x(ti) and x(tj) in the time series it 2 3 4 5 6 7 8 9 10
have visibility and become two connected
nodes in the associated graph, if any other ‘1 ; ; . ; ® ; ; “
data (tk, x(tk)) placed between them
(ti<tk<tj) fulfills

X(te) < x(t;) + (X(t;) — x(t;))

tk _ti
t. —t

] |

1 and j are connected if one can draw
a straight line in the time series
joining the two points i and j, such
that, at all intermediate points
(ti<tk<tj), x(tk) falls below this line

3 Network



Complex Networks

Properties of Complex Networks

v' Shortest path (d;): Corresponds to the minimal distance between

all paths that connect nodes i and j

: : —
d;; is the red line (3) and e / N /\ J
- o

not the green one (4)

v Average path length (1): Is the average number of steps along the
shortest paths for all possible pairs of network nodes. It measures
the efficiency of information or mass transport on a network.

1
<di’j> -~ N (N _1) Zdi,j

i ]



Complex Networks

Properties of Complex Networks

v Diameter (D): The maximum length between all shortest paths

/‘
VA
i

D=max(dij)=3

v Degree (Ki): The degree Ki of a node 1 is the number of connections
of the node to other nodes

Ki=2, K2=2, K3=5, K4=1, K5=2, K6=4 6

/‘

N
So

2
1//3
£



Complex Networks

Important properties of Complex Networks

v Degree distribution: P(k) of a network specifies the fraction of

nodes having exactly degree k

v' Clustering coefficient: Ci is the ratio between the number of links E

connecting the nearest neighbors of i and the total number of

possible links between these neighbors.

= Zei c = =
Ci = ki (kl _1) Kl 5) el 3

K. is the degree of 1, e; is the number of links directly connecting neighbors of 1

The clustering coefficient of a network C is the average of Ci over

()= e

all nodes C



Complex Networks properties

v Modularity (M): a measure of the
structure of a network. It
measures the strength of division
of a network into modules (also
called groups, clusters or

communities).

v Networks with high modularity Newman M E J PNAS 2006;103:8577-8582
have dense connections between
the nodes within modules but
sparse connections between nodes

in different modules.



Complex Networks

v Main Idea: Different dynamical systems demonstrate distinct local

structures in phase space.

v Time series with different dynamic (recorded from different region

of the jet) exhibit distinct topological network structures



Complex Networks: Results

Near the boundary Near the jet line

Different structure

WS B % AR R VR gkt



Complex Networks: Results

> Visibility method

24.2 T T T T T node:2439
o4 1=1563 | node:1563 . degree:245
degree:354 e
238~ . node:2990
- 7d degree:165
v 236 t=533 B node:1095 A iy i
g t=2990 degree218 &, " Neh)
S 234r - - . g N 4
g s t=2439 €&—- K Node Degree
€32 ¥ £=1095 1 NG ¢ vant, T 163 123
= node:533 N A
% 23r | | degree:242 windh} 533 242
T 1095 218
28- . ~ I
- B g 1563 354
22.6- 7 degree:123 e, & 2439 245
24 1 | 1 1 ' 2990 165
I I I I I L .
0 500 1000 1500 2000 2500 3000 3500 e
t (sec . . o o
v' Peak of the valuédre due to the interaction of small heated eddies to the bigger

vortex

v' Throughout the development of the time series if there exists a peak and the
previous and next value would not be located very close this data tend to have
higher degree than the other data.

v’ At the network each point represented as a hub with different degree

v' Physically this means that at these points we have a strong influence of a heated
vortex to less heated fluid



Complex Networks: Results

—=—Diameter ——Average path length Case 1
70 25
60 Ny
PR Py 20 Lowest values of

50 ";f \'\./\"a\\ s . .

\7 . Diameter : The maximum length between
40 / V //\ all shortest paths
" ¢/ N, | Average path length (1): average number of
2 / steps along shortest paths for all possible
. Jet axis s | pairs of network nodes
0 0

Location of time series at horizontal axis

In the jet axis region : fully developed turbulence 2 increased presence of
short-lived small scales 2 change of states occur faster = successive states
are less linked

As we move towards to boundary large scale longer living structures persist
- change of states take more time to occur



Complex Networks: Results

Casei1
-s-Clustering Coefficient —+—modularity

f: Clustering coefficient: Ci is the ratio between

sy [T AN |\ ® | the number of links E connecting the nearest
IRPEE "ol Ny | |* os mneighbors of I and the total number of

VYT | TS k‘/\‘\v i *f,:",:' possible links between these neighbors.
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Due to presence of short lived small
r' 0,75
o1 || Jetaxis

structures connections between successive
0

0,7

. | sates are reduced compared to regions where
gdddysyy long-lived structure persist.

32,4
33,4
34,4

35,25
35,4
36,25
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37,4
38,25
38,4
39,25
40,25

Location of time series at horizontal axis

Modularity (M): a measure of the structure of a network. It measures the
strength of division of a network into modules (also called groups, clusters or
communities).

Short live structures result in fewer well defined separations. More
interconnections are present.



Other Cases- Diameter and Average path length
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5th Case Study

4th Case Study



Case Studies

Clustering Coefficient and Modularity

—=-Clustering Coefficient ——modularity -=-Clustering Coefficient ——modularity
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Conclusions

Results of jet axis location using our methodology and comparison with
estimations from hydromechanics methods

Case Study Shape of Measurement station Estimated
nozzle attributed to the jet axis  location of jet
using the clustering axis using a

procedure (present study)  Gaussian fit

1st Round 38.25 37.75
ond Round 37.70 38.00
3rd Elliptical 38.00 38.00
4th Elliptical 37.50 38.00

5t Elliptical 39.00 38.20




Conclusions

Distinguish the jet axis region from the regions near the boundary (ambient
water) and the intermediate regions

v’ Various measures can provide information about various regions of the jet as well
as about the location of the jet axis

v Using a combination of all the measures along with a clustering procedure can
discriminate far better various regions of the flow based on a different behavior
and lead to a methodology for obtaining the location of jet axis

v' Analysis is capable of extracting information and can be useful for a more clear
discrimination of the time series near jet axis from others that correspond to the
region near the boundaries

v This methodology seems quite promising for application in complex flows, as well
as in applications where several different state zones exist in a physical system
where one can have access only to spatiotemporal data

v The time series derived from different regions along the horizontal line, exhibit
different topological features of the network
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