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Introduction

Questions:

I What is the dynamical behavior of a single Hamiltonian oscillator,

whose potential is governed by fractional power nonlinearities?

I Can a generalization of the usual trigonometric functions sin, cos
be applied to treat this problem?

I What can we learn about such a Hamiltonian system of two or

more such coupled oscillators?
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Introduction-Simple Harmonic Oscillator

Let us start with the harmonic oscillator from Classical Mechanics

I Introduce the regular trigonometric functions

y1(t) = sin(ωt), y2(t) = cos(ωt)
as solutions to the Cauchy problem of the linear harmonic oscillator:

y′′(t) + ω2y(t) = 0, (y(0), y′(0)) = (y01 , y02) ∈ R, ω ∈ R+

satisfied by the following expression:

y(t) = y01 cos(ωt) + (y02/ω) sin(ωt)
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Simple Harmonic Oscillator

I Transformation to a system of first order ODEs yields:

y′ = x, x ′ = −ωy
which then satisfies:

|x|2 + |y|2 = 1
I Substituting x(t) = sin(ωt), y(t) = cos(ωt):

| sin(t)|2 + | cos(t)|2 = 1
consequently leads to the Pythagorean trigonometric identity.
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Generalizing the Trigonometric Functions

Hollomon’s Nonlinear Oscillator

Hollomon, John Herbert. "Tensile deformation."

I Let us introduce the generalized trigonometric functions:

y1(t) = sinp(t), y2(t) = cosp(t)
as solutions to the nonlinear Cauchy problem:[

φ−1 (y′)
]′

+ φ(y) = 0, y(0) = 0, y′(0) = 1
where φ : Ω1 ⊂ R→ Ω2 ⊂ R, Ω1,Ω2 with:

φ(ε) = |ε|p−2ε, p ∈ R+{0}
a power law function.
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Generalizing the Trigonometric Functions

Dynamical System of Two ODEs

I Transformation to a system of first order ODEs yields:

x ′ = −φ(y) = −|y|p−2y, y′ = φ(x) = |x|p−2x
which then can be proved it satisfies:

|x|p + |y|p = 1

I Substituting x(t) = sinp(t), y(t) = cosp(t):

| sinp(t)|p + | cosp(t)|p = 1
consequently leads to the Generalized Pythagorean identity.

I For p = 2 the system drops back to the linear case and

sinp=2(t) = sin(t), cosp=2(t) = cos(t) .
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Plotting sinp(t), cosp(t)
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(a) x(t) for p = 1.5.
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(b) y(t) for p = 1.5.
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(c) x(t) for p = 3.
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(d) y(t) for p = 3.
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Phase Portraits
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Figure: Plots of the phase portraits for various p values and initial conditions

x(0) ∈ [−1,1], y(0) ∈ [−1,1].
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Generalized Sine

Inverse Function

I The inverse generalized trigonometric sinp(t) is defined as:

sin−1
p (t) =


∫ t

0
ds

p
√

(1−sp)p−1
, 0 ≤ t ≤ 1

−
∫ −t

0
ds

p
√

(1−sp)p−1
, −1 ≤ t ≤ 0

has two branches, is continuous and is defined over the domain

t ∈ [−1,1] for p ∈ R+.

I However, an explicit expression for sinp(t) has not been yet acquired.
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Generalized Sine

Using Hypergeometric functions

I We can prove that it holds:

sin−1
p (t) = t2F1

(
1− 1

p ,
1
p ,1 + 1

p ; tp
)
,0 ≤ t ≤ 1

where:

2F1 (α, β, γ; z) =
∑∞

n=0
(α)n(β)n

(γ)n

zn

n!
is the ordinary Hypergeometric Gauss function.

I The relation is consistent with the expected results, since:

lim
p→2

sin−1
p (t) = lim

p→2
t2F1

(
1− 1

p
,
1
p
,1 +

1
p

; tp

)
= t2F1

(
1/2,2,3/2; t2)

and

t2F1 (1/2,2,3/2; t2) = sin−1(t)
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Generalized Sine

Implicit Relation

I We can now derive the following sine function in an implicit way:

sinp(t) =


t

2F1

(
1− 1

p ,
1
p ,1+

1
p ;

(
t

2F1(1− 1
p , 1

p ,1+ 1
p ;(··· )p)

)p) 0 ≤ t ≤ 1

− t

2F1

(
1− 1

p ,
1
p ,1+

1
p ;

(
− t

2F1(1− 1
p , 1

p ,1+ 1
p ;(··· )p)

)p) , −1 ≤ t ≤ 0

(1)

I The generalized cosine function is then given by:

cosp(t) =

{
p
√

1− | sinp(t)|p, 0 ≤ t ≤ 1
− p
√

1− | sinp(t)|p, −1 ≤ t ≤ 0
(2)
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Plot of sinp(t)

Figure: Plots of sinp(t) for various values of p = 2, p = 3, p = 4.5, p = 6.5
and t ∈ [0,1].
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Application to One Degree of Freedom

Nonlinear Spring-Mass System

I A direct application of these generalized sine functions is the nonlinear

spring-mass system under the Hollomon law:

F(x, ẋ, t) = −k|x|p−2x, 1 < p ≤ 2, k > 0
with an equation of motion:

mẍ + k|x|p−2x = 0

I The potential function is given by:

V (x; p) = k|x|p
p

I Nonlinear spring-mass system is solved by the generalized trigonometric

functions:

(y1(t), y2(t)) = (sinp(t), cosp(t))
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Application to One Degree of Freedom

The case of p = 4/3

I We choose k/m = 1 and p = 4/3 to get:

ẍ + x1/3 = 0
The corresponding potential is given by:

V (x) = (3/4)x4/3
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Application to One Degree of Freedom

Analytical Solution

A first integral of the motion can be derived by the ODE by direct integration:

ẋ2 + (3/2)(±x)4/3 = c, x ≥ 0, x < 0
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4

x(t)

x'
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)

Figure: Phase portrait of the two first integrals of motion for x ∈ [−5, 5], ẋ ∈ [−5, 5]
and c ∈ [2, 40].
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Application to One Degree of Freedom

Analytical Solution

I An implicit analytical solution can be provided involving elliptic integrals:

2
√

6c [K2 − K1]
2 = t2, c ∈ R

I The elliptic functions K1,K2 depend on the arcsin(z):

K1 = F
[
arcsin

[( 3
2c

)1/4
x1/3

]
;−1

]
,K2 = E

[
arcsin

[( 3
2c

)1/4
x1/3

]
;−1

]
I The turning point is given by:

xtp = (2/3)3/4 c3/4

I The period of the solution is:

P = 4
√

2(6c)1/4 (E(−1)− F(−1)) , c ∈ R
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Application to One Degree of Freedom

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

t

x(
t)

Figure: Parametric plot of the analytical solution for t ∈ [−1,1] and c → 2
corresponding to the innermost curve in the phase space plot above.
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Application to One Degree of Freedom

Fourier Series Approximation

I Those analytical expressions are useful, but their drawback is their domain

t ∈ [−1, 1]. We suggest Fourier expansion to acquire a better approximation of

the periodic solutions.

I We consider that the symbolic solution x(t) can be approximated by:

x(t) = 1
2 A0 +

∑∞
n=1{An cos(nωt) + Bn sin(nωt)}

I Direct application to the ODE leads to the following trigonometric equation:∑∞
n=1 A2n−1 cos ((2n − 1)ωt) =

[∑∞
n=1 A2n−1 ((2n − 1)ω)2 cos ((2n − 1)ωt)

]3
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Application to One Degree of Freedom

Fourier Series Approximation

I We begin by expanding and equating the first two terms:

A1 cos(ωt) + A3 cos(3ωt) =
[
A1ω

2 cos(ωt) + 9ω2A3 cos(3ωt)
]3

I Consistent with the left side of the original equation, only terms up

to cos(3ωt) should be retained. This leads to two equations

involving terms proportional to cos(ωt) and cos(3ωt) respectively:{
A2

1 + 9A1A3 + 162A2
3 = 4

3ω6

A3
1 + 54A3A2

1 + 2187A3
3 = 4A3

ω6
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Application to One Degree of Freedom

Fourier Series Approximation

I Insight can be gained by numerical evaluation of A1,A3.

Table: Numerical values of the coefficients A1,A3,A5 for

ω ≈ 0.996167.

A1 A3 A5

−1.25523 0.027139 −0.00384421
1.25523 −0.027139 0.00384421
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Application to One Degree of Freedom

Fourier Series Approximation

I Although the values of A1 vary rapidly with ω, the ratios A3/A1 and A5/A1 are essentially

constant at A3/A1 = −0.0216208 and A5/A1 = 0.0030625543 except for small

values of ω < 0.01.
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Comparing Single-Cosine with the Symbolic Expression
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(b) c = 100

Agreement is excellent for c in the range of 0.01 to 100.
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Analysis on Coupled Oscillators

I We consider the following system of nonlinear coupled oscillators:

ẍ = −|x|n−1x + k|y− x|n−1(y− x)

ÿ = −|y|n−1y− k|y− x|n−1(y− x)

I The corresponding potential reads:

V (x, y) = 1
(n+1)x

n+1 + k
(n+1)(y− x)n+1 + 1

(n+1)y
n+1

I and the Hamiltonian is:

H(x, y) = 1
2

(
ẋ2 + ẏ2)+ 1

(n+1)

(
xn+1 + k(y− x)n+1 + yn+1)
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Plot of the Potential

(c) n = 1/3. (d) n = 3/5.
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Application to Two Degrees of Freedom

The case of n = 1/3

I The potential reads:

V (x, y) = (3/4)
(
x4/3 + k(y− x)4/3 + y4/3)

I System’s Energy E coincides with the Hamiltonian:

E = (1/2)
(
ẋ2 + ẏ2)+ (3/4)

(
x4/3 + k(y− x)4/3 + y4/3)

and remains invariant under the scaling transformation:

x = λx̂, t = λ1/3τ
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Application to Two Degrees of Freedom

Special Periodic Solutions

I Plugging in the system of ODEs x̂ = ŷ, reduces to the problem of

one oscillator, solved previously.

¨̂x = −x̂1/3 (In phase solution)

I Setting in the system of ODEs x̂ = −ŷ, leads to the following

problem of one degree of freedom:

¨̂x = −(21/3k + 1)x̂1/3 (Out of phase solution)

which is again solved by the theory of the single oscillator

discussed earlier.
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Poincaré Sections of the Coupled HOS
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Figure: k = 0.01
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Poincaré Sections of the Coupled HOS

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

y(t)

y'
(t
)

Figure: k = 0.1
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Poincaré Sections of the Coupled HOS
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Figure: k = 1
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Conclusion & Future Work

Remarks

I Generalized trigonometric functions sinp(t), cosp(t) constitute

solutions to the nonlinear harmonic oscillator, since they satisfy the

generalized Pythagorean identity:

| sinp(t)|p + | cosp(t)|p = 1
I We present an analytical solution and a Fourier approximate for

the nonlinear spring-mass system under Hollomon’s law.

I Poincaré sections for the coupled HOS show both regions of

stability and weak chaos for various values of k.
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Conclusion & Future Work

Future Work

I Extension of our study to the case of n = 3/5.

I Elaborate on our study of the class of periodic solutions called

Simple Periodic Orbits (SPOs).

I Search for Fourier approximates in the case of coupled HOS.

I What about more degrees of freedom?
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