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Infroduction

Questions:
» What is the dynamical behavior of a single Hamiltonian oscillator,
whose potential is governed by fractional power nonlinearities?

» Can a generalization of the usual frigonometric functions sin, cos
be applied to treat this problem?

» What can we learn about such a Hamiltonian system of two or
more such coupled oscillators?
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Intfroduction-Simple Harmonic Oscillator

Let us start with the harmonic oscillator from Classical Mechanics

> Introduce the regular frigonometric functions
y1(t) = sin(wt), ya(t) = cos(wt)
as solutions to the Cauchy problem of the linear harmonic oscillator:
y”(t) + wzy(t) =0, (y(0), y'(O)) = (Yo1» Yo,) ER,w € R*
satisfied by the following expression:
y(t) = yo, cos(wt) + (yo,/w) sin(wt)
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Simple Harmonic Oscillator

» Transformation to a system of first order ODEs yields:
y=x, xX=-wy
which then satisfies:
[x[? + [yl* =1
» Substituting x(t) = sin(wt), y(t) = cos(wt):
|sin(t)|? + | cos(t)|? = 1
consequently leads to the Pythagorean trigonometric identity.
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Generalizing the Trigonometric Functions

Hollomon’s Nonlinear Oscillator
Hollomon, John Herbert. "Tensile deformation.”

> Let us infroduce the generalized frigonometric functions:
yi(t) =sinp(t), ya(t) = cosp(t)
as solutions to the nonlinear Cauchy problem:
_ !/
(07" (V)] +é(y) =0, y(0)=0,y(0)=1
where ¢ : 2 C R — Q5 C R, 21, Qg with:
¢(e) = |e[P~%¢, p e RT{0}
a power law function.
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Generalizing the Trigonometric Functions

Dynamical System of Two ODEs

» Transformation to a system of first order ODEs yields:

X ==p(y) = —ylP %y, Y = d(x) = [x[P2x
which then can be proved it satisfies:
x[P +[ylP =1

> Substituting x(t) = sin,(t), y(t) = cosp(t):
| sinp (£)[P + | cosp (1) [P = 1
consequently leads to the Generalized Pythagorean identity.

» For p = 2 the system drops back to the linear case and
sinp—o(t) = sin(t), cosp=s(t) = cos(t)
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(©) x(t) forp = 3. (d) y(t) for p = 3.
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Phase Portraits
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Figure: Plots of the phase portraits for various p values and initial conditions
x(0) € [-1,1],y(0) € [-1,1].
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Generalized Sine

Inverse Function

> The inverse generalized trigonometric sin,(t) is defined as:

0<t<1
sin, ' () = f°’</<1 S T
p _ (Tt ds —1<t<o0
O Yooy =0
has two branches, is continuous and is defined over the domain

€[-1,1]forp € RT.

> However, an explicit expression for sin,(t) has not been yet acquired.
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Generalized Sine

Using Hypergeometric functions

» We can prove that it holds:

sin, ! (t) = t,Fy (1

11l tp),ogt§1

where:
oFi (0, 8,73 2) = Yone, iy
is the ordinary Hypergeometric Gauss function.

» The relation is consistent with the expected results, since:
lim sin ' (t) = lim t, F' 11 1+l~tP =tF (1/2,2,3/2;t%)
P2 D P2 2171 p) pa pa 2171 )< 9

and
toFy (1/2,2,3/2;t2) = sin~'(t)
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Generalized Sine

Implicit Relation

» We can now derive the following sine function in an implicit way:

L 0<t<1

P
oFy 1—171,1+1;< L > >
p’p p 11 ...
_ < am (1=, 314 1i¢)p)

sin,(t) =
lnp() t —1§t§0

- ( P\
2F) 1—17l,1+l;(— . ))
p’p r 11 1.0...

am (1-1. 30+ 15¢-)p)

» The generalized cosine function is then given by:

) ¢/1—|siny(t)[PF, 0<t<1 >
COS =
P —/1T—[siny(t)],, —1<t<0

M
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Plot of sin,(t)
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Figure: Plots of siny(t) for various values of p =2, p = 3,p = 4.5,p = 6.5
and t € [0, 1].
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Application to One Degree of Freedom

Nonlinear Spring-Mass System

» A direct application of these generalized sine functions is the nonlinear
spring-mass system under the Hollomon law:
F(x,x,t) = —k|x|P"2x, 1<p<2,k>0
with an equation of motion:
mx + k|x[P72x =0
» The potential function is given by:
V(x;p) = <L

> Nonlinear spring-mass system is solved by the generalized trigonometric
functions:

(U1(1), y2(1)) = (sinp(t), cosp(t))
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Application to One Degree of Freedom

The case of p = 4/3

> We choose k/m =1 and p = 4/3 fo get:
x+x%=0
The corresponding potential is given by:
V(x) = (3/4)x*/?
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Application to One Degree of Freedom

Analytical Solution

A first integral of the motion can be derived by the ODE by direct integration:
24 (8/2)(xx)Y?=¢, x>0,x<0

S

Figure: Phase portrait of the two first infegrals of motion for x € [—5, 5], x € [—5, 5]
and ¢ € [2,40].
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Application to One Degree of Freedom

Analytical Solution
» An implicit analytical solution can be provided involving elliptic integrals:
2\/6C[K2—K1]2:t2, CGR
> The elliptic functions Ki, K2 depend on the arcsin(z):
Ki=F [arcsin [(%)1/4 xl/B} ; —1] Ko = E [arcsin [(%)1/4 xl/s] ; —1}
» The turning point is given by:
xp = (2/3)°* /%

» The period of the solution is:
P =4v2(6c)"/* (E(-1) = F(-1)), ceR
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Application to One Degree of Freedom
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Figure: Parametric plot of the analytical solution for t € [—1, 1] and ¢ — 2
corresponding to the innermost curve in the phase space plot above.
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Application to One Degree of Freedom

Fourier Series Approximation

» Those analytical expressions are useful, but their drawback is their domain
te [f 1, 1]. We suggest Fourier expansion to acquire a better approximation of
the periodic solufions.

»  We consider that the symbolic solution x( t) can be approximated by:
x(t) = A0+ >°°2  {An cos(nwt) + Bnsin(nwt)}

» Direct application to the ODE leads to the following frigonometric equation: 5
S Agn—1cos ((2n — Dwt) = [0 Asn—i1 ((2n — 1)w)? cos ((2n — 1)wt)]
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Application to One Degree of Freedom

Fourier Series Approximation

» We begin by expanding and equating the first two terms:
A cos(wt) + Ag cos(3wt) = [Ajw? cos(wt) + Iw? Az cos(3wt)] °
» Consistent with the left side of the original equation, only terms up
to cos(8wt) should be retained. This leads to two equations
involving terms proportional to cos(wt) and cos(3wt) respectively:

A} + 9A1A3 + 16243 = %5
A3 + 54A3A? + 2187A5 = 48

wb
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Application to One Degree of Freedom

Fourier Series Approximation

> Insight can be gained by numerical evaluation of Ay, As.

Table: Numerical values of the coefficients A, A3, As for
w ~ 0.996167.
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Ay

Az

As

—1.25523 | 0.027139 | —0.00384421

1.25523 | —0.027139 | 0.00384421
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Application to One Degree of Freedom

Fourier Series Approximation
> Although the values of A1 vary rapidly with w, the ratios Az /A1 and As /A are essentially

constant at Az /A1 = —0.0216208 and As /A1 = 0.0030625543 except for small
values of w < 0.01.
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Comparing Single-Cosine with the Symbolic Expression

00 05 10 15 o 5 10 15
t t

(@) c=0.01 (B) c =100

Agreement is excellent for c in the range of 0.01 to 100.
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Analysis on Coupled Oscillators

» We consider the following system of nonlinear coupled oscillators:

= —|x"x+kly — X"y —x)

—|y" 'y — kly — X"y — x)

» The corresponding potential reads:
V(x, y) — (rHl-l) n+1 + o )(y x)n—i—l + o )yn—H
» and the Homil’ronion is:
(x y) (x + 4 )+ = J1r1) (xn+1 _|_k(y_x)n+l _|_yn+1)
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Plot of the Potential
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Application to Two Degrees of Freedom

The case of n = 1/3

» The potential reads:
V(x,y) = (3/4) (x*® + k(y — x)*/® + y*/?)
» System’s Energy E coincides with the Hamiltonian:
E=(1/2) ()'cz + yz) +(3/4) (x4/3 + k(y — x)4/3 + y4/3)
and remains invariant under the scaling transformation:
x =Mk, t=\/37
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Application to Two Degrees of Freedom

Special Periodic Solutions

> Plugging in the system of ODEs x = J, reduces to the problem of
one oscillator, solved previously.

x = —x/3  (In phase solution)

> Setting in the system of ODEs X = —{j, leads fo the following
problem of one degree of freedom:
X =—(28Kk+ 1)xY/3  (Out of phase solution)
which is again solved by the theory of the single oscillator
discussed earlier.
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Poincaré Sections of the Coupled HOS
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Figure: k = 0.01
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Poincaré Sections of the Coupled HOS
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Figure: ik = 0.1
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Poincaré Sections of the Coupled HOS
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Conclusion & Future Work

Remarks

» Generalized trigonometric functions sinp(t), cosp(t) constitute
solutions to the nonlinear harmonic oscillator, since they satisfy the
generalized Pythagorean identity:

| sinp () [P + [ cosp(1)[P = 1

» We present an analytical solution and a Fourier approximate for

the nonlinear spring-mass system under Hollomon'’s law.

» Poincaré sections for the coupled HOS show both regions of
stability and weak chaos for various values of k.
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Conclusion & Future Work

Future Work

v

Extension of our study fo the case of n = 3/5.

v

Elaborate on our study of the class of periodic solutions called
Simple Periodic Orbits (SPOs).

Search for Fourier approximates in the case of coupled HOS.

v

v

What about more degrees of freedom?
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