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PART I: NONLINEAR LATTICES
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Nonlinear Lattice

Discrete Solitons

Discrete solitons were first suggested by Davydov in alpha-helix proteins. This model
attempted to explain some fundamental issues in biophysics such as for example storage
of phonon energy in proteins.

i~ dΨn
dt

+ J(Ψn+1 −Ψn−1) + σ |Ψn|2 Ψn = 0
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Nonlinear Lattice

Integrable vs Non-integrable lattices

sine-Gordon (Integrable) VS Discrete SG (non-integrable)

utt − uxx = Γsinu, vs ün = un+1 − 2un + un−1 + Γsinun

NSL (intgrable) VS Ablowitz-Ladik lattice (Integrable)/DNLS (non-integrable)

iut = 2|u|2u + uxx

VS

iu̇n = |un|2(un+1 + un−1) +
1

h2
(un+1 − 2un + un−1)

and

iu̇n = 2un|un|2 + 1

h2
(un+1 − 2un + un−1)
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Klein-Gordon Lattice

Klein-Gordon Lattice

Klein-Gordon (KG) lattice models a chain of coupled anharmonic oscillators with
nearest-neighbour interactions

ün + V
′(un) = ε(un−1 − 2un + un+1).

where {un(t)}n∈Z
: R → R

Z, dot represents time derivative, ε is the coupling constant,
and V : R → R is an on-site potential.

ε εε εε εε

Applications:

• dislocations in crystals (e.g. Frenkel & Kontorova 1938)

• oscillations in biological molecules (e.g. Peyrard & Bishop 1989)
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Klein-Gordon Lattice

Anharmonic oscillator

We make the following assumptions:

• V (u) = u ± u3 +O(u5), where +/ corresponds to hard/soft potential;

• 0 < ε≪ 1: oscillators are weakly coupled.

In the anti-continuum limit (ε = 0), each oscillator is governed by

ϕ̈+ V
′(ϕ) = 0, ⇒ 1

2
ϕ̇2 + V (ϕ) = E ,

where ϕ ∈ H2
per (0,T ). Period of oscillations T is uniquely defined by the energy level E ,

according to the following formula:

T =
√

2

∫ a

−a

dϕ
√

E − V (ϕ)
.
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Klein-Gordon Lattice

Multi-breathers in the anti-continuum limit

Breathers are spatially localized time-periodic solutions to the Klein-Gordon lattice.
Multi-breathers are constructed by parameter continuation in ε from ε = 0. For ε = 0 we
take

u
(0)(t) =

∑

k∈S

σkϕ(t)ek ∈ l
2

(

Z,H2

per (0,T )
)

,

where S ⊂ Z is the set of excited sites and ek is the unit vector in l2(Z) at the node k .
The oscillators are in phase if σk = +1 and out-of-phase if σk = 1.

Theorem (MacKay & Aubry 1994)

Fix the period T 6= 2πn, n ∈ N and the T -periodic solution ϕ ∈ H2
per(0,T ) of the

anharmonic oscillator equation for T (E) 6= 0. There exist ε0 > 0 and C > 0 such that
∀ε(ε0, ε0) there exists a solution u

(ǫ) ∈ l2
(

Z,H2
per(0,T )

)

, of the Klein-Gordon lattice
satisfying

∥

∥

∥u
(ǫ) − u

(0)
∥

∥

∥

l2(Z,H2
per (0,T ))

≤ Cǫ
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Klein-Gordon Lattice

Stability of discrete breathers

Multibreathers in KleinâĂŞGordon lattices:

• Morgante, Johansson, Kopidakis, Aubry 2002 - numerical results

• Archilla, Cuevas, SÃąnchez-Rey, Alvarez 2003 - AubryâĂŹs spectral band theory

• Koukouloyannis, Kevrekidis 2009 - MacKayâĂŹs action-angle averaging

Similar works:

• Pelinovsky, Kevrekidis, Franzeskakis 2005 - discrete NLS lattice

• Youshimura 2011 - Fermi-Pasta-Ulam bi-atomic lattice

• Youshimura 2012 - KG unharmonic lattice
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Klein-Gordon Lattice

Floquet Multipliers

Linearize about the breather solution to the dKG by replacing u with u+w, where
w : R → R

Z is a small perturbation, and collect the terms linear in w:

ẅn + V ′′(un)wn = ǫ (wn+1 − 2wn + wn−1) , n ∈ Z

In the anti-continuum limit, it is easy to find the Floquet multipliers:

• on ”holes” n ∈ Z \ S,

ẅn + wn = 0,

(

wn(T )
ẇn(T )

)

=

(

cos T sin T

− sin T cos T

)(

wn(0)
ẇn(0)

)

,

Floquet multipliers are µ1,2 = e±iT

• on excited sites, n ∈ S,

ẅn + V
′′(ϕ)wn = 0,

(

wn(T )
ẇn(T )

)

=

(

1 0

T ′(E)(V ′(a))2
1

)(

wn(0)
ẇn(0)

)

,

Floquet multipliers are µ1,2 = 1 of geometric multiplicity 1 and algebraic multiplicity
2.
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Klein-Gordon Lattice

Floquet Exponent

A Floquet multiplier µ can be written as µ = eλT

Theorem (Pelinovsky ’12)

For small ǫ > 0 the linearized stability problem has 2M small Floquet exponents

λ = ǫN/2Λ + O
(

ǫ(N+1)/2

)

, where λ is determined from the eigenvalue problem

− T (E)2

2T ′(E)KN

Λ2
c = Sc, c ∈ C

M

with S ∈ R
M×M is a tridiagonal matrix with elements

Si,j = −σj (σj−1 + σj+1) δi,j + δi,j−1 + δi,j+1, 1 ≤ i , j ≤ M,

and KN is defined by

KN =

∫ T

0

ϕ̇(t)ϕ̇N−1(t)dt ,
(

∂2

t + 1

)

ϕk = ϕk−1, ϕ0 = ϕ.
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Klein-Gordon Lattice

Stability of Multi-breathers

Sandstede (1998) showed that the matrix S has exactly n0 positive and M − 1 − n0

negative eigenvalues in addition to the simple zero eigenvalue, where n0 =(sign changes
in n). Hence, stability of multibreathers is determined by the sign T ′(E)KN(T ) and the
phase parameters {σk}M−1

k=1
.

Theorem
If T ′(E)KN(T ) > 0 the linearized problem for the multibreathers has exactly n0 pairs of
”stable” Floquet exponents and M − 1 − n0 pairs of ”unstable” Floquet exponents
counting their multiplicities. If T ′(E)KN(T ) < 0 the conclusion changes to the opposite.

V.M. Rothos (AUTh) Nonlinear Wave Propagation 19 July 2017 12 / 60



Klein-Gordon chain with long range interactions (LRI)

KG with LRI
The picture radically changes when the chain involves interactions with range longer than
mere nearest neighbors. The range parameter r will be used to indicate the interaction
length between the oscillators of the chain. The next nearest neighbor (NNN) chain the
range is r = 2. The coupling force between the oscillators of the chain is linear and the
coupling constants εi , i = 1 . . . r are not, in general, equal.

ε εε εε εε1 1 1 1 εε1

εε2 εε2εε2εε2

The Hamiltonian of a 1D KG chain with long range interactions is:

H =

∞
∑

i=−∞
[
p2

i

2
+ V (xi)] +

1

2

∞
∑

i=−∞

r
∑

j=1

εj (xi − xi+j)
2 (3.1)

which leads to the equations of motion

ẍi = −V
′(xi) +

r
∑

j=1

εj(xi−j − 2xi + xi+j )
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Klein-Gordon chain with long range interactions (LRI)

Persistence of Multibreathers in KG with LRI
In the anti-continuum limit ǫ = 0, all the oscillators of the chain at rest except for n + 1

“central” ones which move in periodic orbits of frequency w, but arbitrary initial phases.
The space localized and time-periodic motion is denoted by z0(t) and let
S = {0, 1, . . . , n} the set of indices corresponding to the central oscillators.
Action-angle (x , p) 7→ (w , J) canonical transformation. Then H = H(wi , Ji , xj , yj) with
i ∈ S and j ∈ Z \ S. After that, a second canonical transformation

ϑ = w0 A =
n

∑

j=0

Jj

φi = wi+1 − wi Ii =
n

∑

j=i

Jj i = 1 . . . n

where φi denote the n phase differences between the n + 1 successive oscillators and Ii
are the conjugate generalized momenta.
The Hamiltonian becomes H = H(φj , Ij , ϑ,A, xj , pj). We define then

Heff(φi , Ii ,A) =

∮

H ◦ z(t)dt ,

where z(t) is periodic orbit obtained by a continuation procedure using constant
symplectic “area” A.
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Klein-Gordon chain with long range interactions (LRI)

Persistence Condition

Heff can be written as
H

eff = H0(Ii) + ǫ〈H1〉(φi , Ii) (3.2)

where we have omitted constant and higher order terms. The average value of the
coupling part of the Hamiltonian is

〈H1〉(φi , Ii) =
1

T

∮

H1(ϑ,φi , Ii)dt

where all the calculations have been made along the unperturbed periodic orbit z0.
the critical points of the dynamical system associated with Heff are in one-to-one
correspondence with the periodic orbits of the original H-system which will be continued
for ε nonzero but small enough to provide multibreathers. So, by using the form of Heff

of (3.2), we obtain the persistence conditions for the existence of n + 1-site
multibreathers as

∂〈H1〉
∂φi

= 0, i = 1 . . . n, (3.3)
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Klein-Gordon chain with long range interactions (LRI)

Example for LRI in KGlattice

Let εj = kjε, with k1 = 1, then the Hamiltonian becomes

H = H0 + εH1 =
∞
∑

i=−∞
[
p2

i

2
+ V (xi)] +

ε

2

∞
∑

i=−∞

r
∑

j=1

kj (xi − xi+j)
2 (3.4)

Now, since the Hamiltonian is written in the form H = H0 + εH1 the persistence
conditions (3.3) can be used.
Consider n + 1 “central” oscillators and xi =

∑∞
m=0

Am cos(mwi), then

〈H1〉 = −1

2

∞
∑

m=1

r
∑

j=1

n−j+1
∑

s=1

A
2

mkj cos(m

j−1
∑

l=0

φs+l). (3.5)

Then,

∂〈H1〉
∂φi

= 0 ⇒
r

∑

p=1

z2
∑

s=z1

kpM(

p−1
∑

l=0

φs+l) = 0, (3.6)

where z1 = max(1, i − p + 1) and z2 =

{

i for i + p − 1 6 n

n − p + 1 for i + p − 1 > n
.
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Klein-Gordon chain with long range interactions (LRI)

Stability of Multibreathers in KG with LRI

Theorem (Rothos et al 2012)

The characteristic exponents of the multibreather provided by the persistence conditions
(3.6) are given,

σ±i = ±
√

−ε∂w

∂J
χz i , i = 1 . . . n,

where χz i are the eigenvalues of Z with

Z =
∂2〈H1〉
∂φi∂φj

·















2 −1 0

−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1

0 −1 2















, i , j = 1 . . . n. (3.7)

For linear stability all the characteristic exponents to be purely imaginary. So, if
P = ε ∂w

∂J
< 0 we need all the eigenvalues of Z to be negative, while if P = ε ∂w

∂J
> 0 we

need all the eigenvalues of Z to be positive.
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Klein-Gordon chain with long range interactions (LRI)

3-site breathers with r = 2
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Figure: [Color online] Two snapshots of a 3-site (n = 2), anti-phase (φ1 = φ2 = π) multibreather
in a range r = 2 Klein-Gordon chain with ε1 = ε2 = 0.02 and frequency w = 2π/7.
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Klein-Gordon chain with long range interactions (LRI)
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Figure: [Color online] Three snapshots of a 3-site (n = 2), phase-shift (φ1 = φ2 6= 0, π)
multibreather in a range r = 2 Klein-Gordon chain with ε1 = ε2 = 0.02 and frequency w = 2π/7.
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Discrete Sine-Gordon

1 Periodic solutions in advanced-retarded differential equations
• Periodic Boundary Value Problem for functional differential equations.
• Librational and Periodic travelling waves;
• Multiplicity results.

2 Travelling Waves in 2D Lattices: Mathematical Formulation;

3 Applications in travelling waves in nonlinear lattices

4 Travelling Waves in 1D Lattices: Mathematical Formulation;
• Moving Kinks for 1D lattice sine-Gordon
• Numerical Simulations
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Discrete Sine-Gordon

Travelling Waves in 1D Lattice sine-Gordon

Frenkel Kontorova (FK) lattices have been studied as models for atomic chains,
dislocations, charge density waves, magnetic and ferromagnetic domain walls in
condensed matter physics and for parallel coupled one-dimensional Josephson junction
arrays.
The potentials involved are chosen such that the continuum model supports both
stationary and moving defects (kinks or anti-kinks) with topological charge Q = 1. That
is, the kinks connect 0 to 2π (or vice versa) in the usual dimensionless form of potential
adopted in the literature – the so-called sine-Gordon lattice. The discrete sine-Gordon

ün(t) = un+1(t)− 2un(t) + un+1(t)− Γ2
sinun(t)

with solutions

• Discrete kinks (stationary solutions)

• Moving discrete kinks un(t) = U(n − vt)

• Discrete Breathers a highly spatially localized, time-periodic, stable (or at least very
long-lived) excitation in a spatially extended.
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Discrete Sine-Gordon

Methodology

• The travelling wave equation of the corresponding dSG is formulated as a
mixed-type differential equation.

• Applying dynamical system methods (center manifold, normal form) we focus on a
4D dynamical system,

• persistence of periodic solutions for the 4D system implies the existence of travelling
waves with non-small amplitude oscillations on infinite nonlinear lattice,

• Analytical results are compared with numerical simulations for a concrete perturbed
discrete nonlinear sine-Gordon equation, (Rothos & Feckan 2005, Aigner,
Champneys & Rothos, 2003).
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Discrete Sine-Gordon
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Figure: Construction of stationary kinks
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Discrete Sine-Gordon
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Discrete Sine-Gordon

2D nonlinear lattices

An isotropic two dimensional planar model where rigid molecules rotate in the plane of a
square lattice of spacing a.
At site (n,m) the angle of rotation is un,m each molecule interacts linearly with its first
nearest neighbors and with a nonlinear periodic substrate potential.
The equation of motion of the rotator at site (n,m) is

ün,m = G[un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m] + ω2

0sinun,m

y

n−1

n

n+1

m−1 m m+1

U

U

U

UUm−1,n m,n

m,n−1

m+1,n

m,n+1

a

x

where G the linear coupling coefficient and ω2

0 square of the frequency of small
oscillations in the bottom of the potential wells.
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Discrete Sine-Gordon

Due to the symmetry imposed by the lattice Z
2, the existence and speed of a wave

generally will depend on the direction eiθ of motion.
Let θ ∈ R be given, consider solution of lattice

un,m(t) = U(n cos θ + m sin θ − νt)

for some ν ∈ R and U : R → R.
Mixed-Type functional differential Equation ν 6= 0:

ν2U ′′(z) = U(z + cos θ) + U(z − cos θ) + U(z + sin θ) + U(z − sin θ)

−4U(z)− f (U(z))

with z = n cos θ + m sin θ − νt and U(−∞) = 0, U(+∞) = 2π
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Discrete Sine-Gordon

Theorem (Rothos & Feckan ’07)

For any ω > 16 and 1.17196 < T < 1.7579, 2d discrete sine-Gordon equation

un,m − un+1,m − un−1,m − un,m+1 − un,m−1 + 4un,m + ω sin un,m = 0

possesses 4 nontrivial/nonconstant travelling wave solutions of the form

un,m(t) = π + U
(

1√
2

(

n + m
)

− 1

2
t
)

or U(z) satisfying periodical conditions

U(z + T ) = U(z) + 2π,U(−z) = −U(z),T > 0, or

U(z +T ) = −U(z)+ 2π, or U(z +T ) = −U(z), or, U(z +T ) = U(z), U(−z) = −U(z)
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Discrete Sine-Gordon

Theorem (Rothos & Feckan ’07)

1 Let ν > 1 and f ′(0) > 0. Moreover, suppose

e1) ν2 6= gθ

(

π
T

k
)

+ T 2

4π2k2
f ′(0) ∀k ∈ N,

e2) #
{

k ∈ N | ν2 < gθ

(

π
T

k
)

+ T 2

4π2k2
f ′(0)

}

≥
[

T
√

L

2π
√

ν2−1

]

≥ 2, where

[·] is the integer part function.

Then the advance-delay equation has at least 2 nonzero odd T -periodic solutions.

2 Let ν1 < ν < 1. Then the advance-delay equation for θ = π/4 has infinitely many
odd π/rν-periodic solutions {Un(z)}n∈N with

|Un(z) − cn sin 2rνz| ≤ K̃ |ǫ|

for cn → ∞ as n → ∞ and a constant K̃ > 0.
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Discrete Sine-Gordon

Conclusions

⊲ Overview of our recent theoretical and numerical activity in the theme of solitary
nonlinear waves that arise in lattice system.

⊲ The existence of localized traveling waves (sometimes called “moving discrete
breathers” or “discrete solitons”) in Klein-Gordon Lattices and discrete sine-Gordon

⊲ We study the existence and bifurcation of discrete solitons in lattices with local and
nonlocal interactions (Long range interactions).

⊲ LS reduction method, perturbation method, dynamical systems method, topological
and variational methods. Pseudospectral method, Numerical Bifurcation results.

⊲ Application in nonlinear metamaterial lattices, DNA, liquid crystals etc
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Discrete Sine-Gordon
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Discrete Sine-Gordon

PART II: NONLINEAR PDEs
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Background of PDEs

Stability of solutions

Consider PDE of the form

Ut = A(∂x)U +N (U), x ∈ R, U ∈ X
A(z) is a vector-valued polynomial in z, X Banach space consisting of functions
U(x), x ∈ R, A(∂x) closed dense, N nonlinear operator. Travelling
waves:U(x , t) = Q(x − ct), ξ = x − ct

• In (ξ, t) the PDE reads Ut = A(∂x )U + c∂ξU +N (U),ξ ∈ R,U ∈ X ;

• Travelling wave is a stationary solution Q(ξ): A(∂x )U + c∂ξU +N (U) = 0;

• Linearization about steady state Q(ξ) is Ut = A(∂x )U + c∂ξU + ∂UN (Q)U := LU.
The stability of pulses is obtained by the spectrum of operator L.
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Background of PDEs

Type of Solutions

wavetrainpulse multi−bump pulse

Pulse Q(ξ).
Multi-bump pulses: finite number of well-separated copies of the primary pulses.
Periodic Wave Trains with spatial period L Q(ξ + L) = Q(ξ).
Fronts (kinks, anti-kinks) lim|ξ|→∞ Q(ξ) = Q±.

kink-solution
anti-kink solution

m    <  m 
1 2

m   > m1 2
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Stability of Solitons. Why?

• The study of the dynamics associated with the propagation of information (nonlinear
optics, phase transitions in materials etc)

• Only waves that are stable can be reasonably expected to be physically realizable.

• The presence of any instability and understanding its source can be crucial if the
goal is to control the wave to a stable configuration.

• The key information for stability is contained in the liberalization of the PDE about
the wave. In many cases, location of the spectrum suffices to determine the

stability, i.e., spectrum in the left half plane corresponds to stable directions and
that in the right half plane corresponds to unstable directions.

• One tool in particular has come to stand out as central in stability investigations of
nonlinear waves. The Evans function is an analytic function whose zeroes give the
eigenvalues of the linearized operator, with the order of the zero and the multiplicity
of the eigenvalue matching.
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Stability of Solitons. Why?

Evans Function,set-up 1

Consider the scalar reaction-diffusion equation

ut = uxx − u + 2u
3, (x , t) ∈ R× R

+

a pulse solution is given by

u(x) = U(x), where U(x) = sech(x)

Linearizing the PDE yields the following eigenvalue problem

p
′′ − (1 − 6U

2(x))p = λp, ′ =
d

dx

λ = 0 is an eigenvalue with eigenfunction U ′(x).
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Stability of Solitons. Why?

Evans Function,set-up 2

Upon setting Y = (p, q)⊤, write the eigenvalue problem as

Y
′ = (M(λ) + R(x))Y

where

M(λ) =

(

0 1

1 + λ 0

)

, R(x) =

(

0 0

−6U2(x) 0

)

lim|x|→∞ |R(x)| = 0. We will assume Reλ > −1. The eigenvalues and associated
eigenfunctions of M(λ) are given by

µ±(λ) = ±
√
λ+ 1, η±(λ) = (1, µ±(λ))⊤

The solutions Y±(λ, x) which satisfy

lim|x|→∞Y
±(λ, x)e−µ∓(λ)x = η∓(λ), note! lim|x|→∞

∣

∣Y
±(λ, x)

∣

∣ = 0
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Stability of Solitons. Why?

Evans Function,set-up 3

Using hypergeometric series, the solutions Y± = (u±, u±
x ) are found to be

u
±(x ;λ) = e

∓
√

1+λx
[

1 +
λ

3
±

√
1 + λtanh(x)− sech

2(x)
]

which decays to 0 as x → −∞ for Reλ > −1 and decays to 0 as x → ∞ for Reλ > −1.
The Evans Function E(λ) is defined to be the Wronskian:

E(λ) = det

(

u−(0;λ) u+(0;λ)
u−

x (0;λ) u+
x (0;λ)

)

= −2

9
λ(λ− 3)

√
1 + λ

A complex number λ is a root of Evans function E(λ) precisely when
p′′ − (1 − 6U2(x))p = λp, ′ = d

dx
has a bounded nonzero solution for that value of λ;

indeed the solutions u−(x ;λ) and u+(x ;λ) are then linearly dependent and generate a
bounded nonzero solution of p′′ − (1 − 6U2(x))p = λp.
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Nonlinear Schrödinger Equation (NLS)

NLS: Introduction

The Nonlinear Schrödinger (NLS) equation

iut + uxx + 2σ |u|2 u = 0, where σ = ±1 (7.1)

governs the dynamics of the envelopes of wavepackets in the dispersive media, and arises
in many different contexts (nonlinear optics, water waves, etc.)
Zakharov and Shabat published the IST for the NLS equation. Then they extended the
technique (ZS scheme) to some other equations (1973-1974). At about the same time,
Ablowitz, Kaup, Newell and Segur (AKNS) developed an equivalent scheme, which
generalizes the method, described earlier for the KdV equation (AKNS, 1974).
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Nonlinear Schrödinger Equation (NLS)

Lie symmetries of the NLS equation

In the following we use the following one-parameter groups of symmetries, admitted by
the NLS equation (7.1):

• shift in t

t → t + t0, x → x , u → u

• shift in t

t → t , x → x + x0, u → u

• Galilean transformation

t → t , x → x − ct , u → u exp
[

i
c

2

(

x − c

2
t
)]

• scaling

t → a
2
t , x → ax , u → u

a

For example, if u(x ; t) is a solution of (7.1), then due to the Galilean invariance so are

u(x − ct , t)exp
[

i
c

2

(

x − c

2
t
)]

,

and so on.
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Nonlinear Schrödinger Equation (NLS)

Solitary waves of the NLS equation
We look for a solution of the NLS equation (7.1) of the form

u(x , t) = a(x)eiφ(t), (7.2)

Substituting (7.2) into(7.1), we derive

−aφt + axx + 2σa3 = 0. (7.3)

Separating variables in (7.3) gives φt =
axx
a

+ 2σa2 = const . Then, integrating, we
obtain (up to the scaling and the shift in t):

φ = st

(we can assume that s = ±1), and

axx = −2σa
3 + sa. (7.4)

Multiplying (7.4) by ax and integrating, we arrive at

(ax)
2 = −σa

4 + sa
2 + C.

It turns out that the form of solitary waves depends on the sign of (the sign of the
nonlinear term in the NLS equation).
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Nonlinear Schrödinger Equation (NLS)

Focusing NLS: bright solitons

Case I ( σ = 1, focusing NLS in the context of optics-"anomalous dispersion")

iut + uxx + 2 |u|2 u = 0,

In this case, (ax)
2 = −a4 + sa2 + C. If a, ax → 0 as x → ±∞, then C = 0, and

∫

da

a
√

s − a2
=

∫

dx .

For s = 1 we obtain the simplest form of the so-called bright soliton a = sechx , φ = t ,
yielding u = eit sechx . (Consider the second case,s = −1.) Using the scaling and Galilean
symmetries, we immediately obtain the two-parameter family of bright solitons:

u = AsechA(x − ct)exp

[

i

(

c

2
x + A

(

A
2 − c2

4

)

t

)]

.

Note that A and c are independent parameters. (Two more parameters can be added
using shifts in x and t, but these parameters are insignificant.)
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Nonlinear Schrödinger Equation (NLS)

Bright Soliton of NLS
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Nonlinear Schrödinger Equation (NLS)

Defocusing NLS: dark solitons

Case II ( σ = −1, defocusing NLS, in the context of optics-"normal dispersion")

iut + uxx − 2 |u|2 u = 0,

In this case, (ax)
2 = a4 + sa2 + C., and solitary waves are rather different from those in

Case I. For s = −1, choosing C = 1/4 (when the polynomial has repeated roots) we
obtain the simplest form of the so-called dark soliton a = 1√

2
tanh x√

2
, φ = −t, yielding

u = e
−it 1√

2
tanh

x√
2

(Consider the second case, s = 1.) Again, using symmetries, we obtain the
two-parameter family of dark solitons:

u =
A√
2

tanh
A(x − ct)√

2
exp

[

i

(

c

2
x −

(

A
2 +

c2

4

)

t

)]

.

V.M. Rothos (AUTh) Nonlinear Wave Propagation 19 July 2017 42 / 60



Nonlinear Schrödinger Equation (NLS)

Dark Soliton of NLS
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Nonlinear Schrödinger Equation (NLS)

Focusing NLS: Breathers

The focusing NLS equation models the evolution of one-dimensional packets of surface
gravity waves on suciently deep water (Zakharov 1968). Recently, there has been
renewed interest in the so-called "breather" solutions of this equation, which have been
suggested as models for so-called "freak" waves (also, "rogue" waves). Loosely speaking,
a "freak" wave is a single wave or a very short- and short-lived group with a significantly
larger steepness than the surrounding waves.
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Nonlinear Schrödinger Equation (NLS)

NLS breather

The first breather type solution for the focusing NLS equation was found by Ma (1979).
Ma solved the IVP for this equation, where the initial condition was a perturbed plane
wave with boundary conditions |q(x , t)| → |q0| as x → ±∞. Ma has found that the
asymptotic state for his problem consisted of a series of breathers (Ma-breathers), given
below, and small dispersive radiation:

uM =
cos (Ωt − 2ik)− cosh(k)cosh(px)

cos (Ωt)− cosh(φ)cosh(px)
e

2it

Here, k is the real valued parameter, Ω = 2sinh(2k) and p = 2sinh(k).
Taking the limit k → 0 (i.e. when the breathing period tends to zero), Peregrine (1983)
has obtained

uP = limk→0qM =

[

1 − 4(1 + 4it)

1 + 4x2 + 16t2

]

e
2it

Other breather-type solutions have been found by Akhmediev et al. (1987) and Ablowitz
and Herbst (1990).
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Nonlinear Schrödinger Equation (NLS)

(A) The Akhmediev breather, (B) the Peregrine
breather and (C) the KuznetsovâĂŞMa breather
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Discrete NLS equation

Discretize spatial variable:
x → nh, u = {un(t)}n∈Z

.

Discrete second order difference operator:

∂2

x u(x , t) → 1

h2

(

δ2
u(t)

)

n
≡ 1

h2
[un+1(t) + un−1(t)− 2un(t)]

NLS becomes the discrete nonlinear Schrödinger equation:

i∂tun(t) = − 1

h2

(

δ2
u(t)

)

n
− |un(t)|2 un(t), n ∈ Z

(Infinite coupled system discrete nonlinear oscillators)
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Discrete NLS equation

Application of DNLS
The existence of localized waves in DNLS lattices has shown itself to be a delicate
question of fundamental interest. This interest is largely due to the experimental
realization of solitons in discrete media, such as waveguide arrays, optically induced
photorefractive crystals, Bose-Einstein condensates coupled to an optical wave trap, DNA

Figure: A. S. Davydov, J. Theor. Biol. 38, 559 (1973); Biology and Quantum Mechanics,
Pergamon, Oxford, 1982.
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Discrete NLS equation

The prototypical equation that emerges to explain the experimental observations is the
DNLS equation the form

iu̇n =
1

h2
(un+1 − 2un + un−1) + f (un+1, un, un−1), un : R+ → C, n ∈ Z (8.1)

The nonlinear term F can take a number of different forms:

⊲ DNLS fDNLS = |un|2un

⊲ Ablowitz-Ladik fAL = |un|2(un+1 + un−1)

⊲ Salerno fS = 2(1 − α)fDNLS + αfAL

⊲ Cubic-quintic DNLS fcq = (|un|2 + α|un|4)un

⊲ Saturable DNLS fsat =
un

1+|un|2
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Discrete NLS equation

• Standing wave solutions (Discrete Breathers):

un(t) = φne
− iωt , φn ∈ R, lim

|n|→∞
φn = 0

exist in the DNLS equations outside of the spectral band.

• Travelling Breathers have nonlinear resonances with unbounded spectral bands:

un(t) = φ(z)e− iβn− iωt , z = n − vt , ω, v ∈ R,

φ : R → C, lim|z|→∞ φ(z) = 0 exponential decay of the travelling wave solution φ(z):
lim|z|→∞ eκ|z|φ(z) = φ∞, where κ ∈ R and φ∞ ∈ Ct . The travelling breather solutions
exist only if (ω + 2)2 + v2 ≥ 4.
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Discrete NLS equation

Linear properties of the DNLS equations

The ansatz for travelling wave (TW) solutions reduces the DNLS equation to:

− ivφ′(z) = φ(z + 1)e− iβ + φ(z − 1)e iβ − (2 + ω)φ(z)
+ǫ2

f (φ(z), φ(z + 1)e−iβ, φ(z − 1)eiβ), (8.2)
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Dispersion curves ω = ω(k) = −vk + 2(cos(β − k)− 1) for (a) v = 0 and (b) v = 0.5,
when β = 0. The vertical arrows show directions of possible bifurcations of travelling
wave solutions.
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Discrete NLS equation

In parameter space (ω, v), this could imply bifurcation occurs at the boundary between
the linear wave spectrum ω = ω(k) = −vk + 2(cos(β − k)− 1) and the nonlinear wave
spectrum

− ω/2 = 1 − cosβ coshκ, (v/2)κ = sin β sinhκ, (8.3)
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Figure: Bifurcation curve κ = 0 on the (ω, v)-plane for ε = 1. Localized solutions of the
differential advance-delay equation may bifurcate from the boundary to the white region (with
κ ∈ R+). For β < β0 and β > β1, more than one radiation mode exists.
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Discrete NLS equation

Bifurcation of DNLS traveling wave solutions

• The normal form for the bifurcations of TB at the corner point is equivalent to the
third-order differential equation for Φ = Φ(z):

i

3ǫ2
Φ′′′ − iVΦ′ +ΩΦ = h(Φ,Φ′,Φ′′)

which corresponds to the continuous NLS eqn with 3rd order derivative term:

iUt +
i

3ǫ2
Uxxx = h(U,Ux ,Uxx)

• Existence of single-humped localized solutions in the third order ODE is related to
existence of embedded solitons in the third–order derivative NLS equation.

• Ablowitz-Ladik lattice

There is a continuous two-parameter family of single-humped traveling wave solutions.

⊲ DNLS lattice on-site interactions There are no single-humped solutions BUT there exists
an infinite discrete set of one-parameter families of double-humped traveling wave

solutions.
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Discrete NLS equation
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Discrete NLS equation

Numerical continuation using pseudospectral methods

Localized solutions to the advance-delay equation (8.2) can easily be sought numerically
using a pseudo-spectral method originally proposed by Eilbeck et al ; see also Aigner
Champneys Rothos ’03 for similar results for discrete sine-Gordon lattices.
Taking as our starting point the traveling wave form of the DNLS advance-delay (8.2)
with the nonlinearity F , a pseudo-spectral substitution is used to transform the system of
algebraic equations. To do this we use a finite Fourier series expansion to approximate
the discrete breather by functions ψ(z) on a long finite interval [−L/2, L/2]. A particular
choice of expansion terms can be made that exploits the underlying symmetry of the
localized solutions we seek, namely by choosing even real functions and odd imaginary
functions

ψ(z) =
N
∑

j=1

aj cos

(

πjz

L

)

+ ibj sin

(

πjz

L

)

, (8.4)

where aj , bj ∈ R are the coefficient of the Fourier series.
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Discrete NLS equation

Substituting the expansion (8.4) into advance-delay (8.2) at the series of collocation
points zi =

Li
2(N+1)

, i = 1, . . . , 2N gives a system of 2N nonlinear algebraic equations
for the unknown coefficients aj , bj , which can be solved using globally convergent root
finding methods. Once a solution is found, this can be continued in a single parameter
using a numerical path-followed method built around Newton’s method, for example the
code AUTO.
To find waves with zero tails we need to add an extra condition and seek zeros of this
function. A good choice of such a tail function is

∆ = Im(ψ(
L

2
)) (8.5)

which measures the amplitude of the imaginary part of the tail of a solution of period L.
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Discrete NLS equation

saturable DNLS Fsat =
un

1+|un|2
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(a) Continuation of weakly localized solutions (with non-zero oscillatory tails) to (8.2) for
the saturable nonlinearity Fsat solitons for various values of ε = 1/

√
ǫ against Λ = −ω for

v = 0.7, ω = −0.5, and L = 60 showing three zeros of ∆ at ε ≈ 0.76,1.02,1.36. The
shaded region represents the spectral band where any embedded solitons would be of
co-dimension 2. (b, c) Continuation of branch with second zero of ∆ at ε ≈ 1.02. for
c = 0.7,Λ = 0.5, L = 60. (b) Re(ψ), (c) Im(ψ)
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Discrete NLS equation
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n

t

1 200 400 600 800

0

200

400

600
0

200

400

600

0

200

400

600

800

1

2

tn

|u
|

Melvin, Rothos, Champneys ’09, Interaction of two soliton solutions with ε = 1 and
Λ = 0.5. The branch I soliton is initially centered on site n = 300 with v = 1.00926 and
the branch II soliton is centered on site n = 400 with v = 0.67725.
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Discrete NLS equation

Salerno DNLS fS = 2(1 − α)fDNLS + αfAL
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Melvin, Rothos, Champneys ’09. Existence of traveling wave solutions in the Salerno
model for α = 0.65 computed via calculation of the radiation tail amplitude ∆
(κ = 0.5). For β < π/2 the solutions are multi-humped.
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Conclusions

Conclusions

• Type of Solutions for nonlinear PDEs

• Evans functions

• We briefly reviewed the solitonic solutions of NLS.

• We studied the existence and bifurcation of quasiperiodic travelling wave solutions of
DNLS. We employed dynamical systems method (center manifold reduction, normal
form) to analyze the existence of traveling breathers of DNLS.

• We examined the combined effects of cubic and quintic terms of the long range type in
the dynamics of a double well potential (optical thermal media) Nonlocal NLS
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